22 #include <Eigen/Eigen> 23 #include <boost/filesystem.hpp> 30 #ifdef HAVE_PYTHONLIBS 41 std::map<std::string, std::string> params_value, params_bound;
42 params_value.insert({
"label",
"error"});
43 params_value.insert({
"linestyle",
"-"});
44 params_value.insert({
"color",
"blue"});
45 params_bound.insert({
"label",
"3 sigma bound"});
46 params_bound.insert({
"linestyle",
"--"});
47 params_bound.insert({
"color",
"red"});
54 for (
size_t i = 0; i < sx.
timestamps.size(); i++) {
65 for (
size_t i = 0; i < sy.
timestamps.size(); i++) {
76 for (
size_t i = 0; i < sz.
timestamps.size(); i++) {
85 int main(
int argc,
char **argv) {
92 PRINT_ERROR(
RED "ERROR: Please specify a align mode, groudtruth, and algorithm run file\n" RESET);
93 PRINT_ERROR(
RED "ERROR: ./error_singlerun <align_mode> <file_gt.txt> <file_est.txt>\n" RESET);
94 PRINT_ERROR(
RED "ERROR: rosrun ov_eval error_singlerun <align_mode> <file_gt.txt> <file_est.txt>\n" RESET);
95 std::exit(EXIT_FAILURE);
99 boost::filesystem::path path_gt(argv[2]);
100 std::vector<double> times;
101 std::vector<Eigen::Matrix<double, 7, 1>> poses;
102 std::vector<Eigen::Matrix3d> cov_ori, cov_pos;
106 PRINT_DEBUG(
"[COMP]: %d poses in %s => length of %.2f meters\n", (
int)times.size(), path_gt.stem().string().c_str(), length);
117 traj.calculate_ate(error_ori, error_pos);
120 PRINT_INFO(
"======================================\n");
122 PRINT_INFO(
"======================================\n");
125 PRINT_INFO(
"min_ori = %.3f | min_pos = %.3f\n", error_ori.
min, error_pos.
min);
126 PRINT_INFO(
"max_ori = %.3f | max_pos = %.3f\n", error_ori.
max, error_pos.
max);
127 PRINT_INFO(
"std_ori = %.3f | std_pos = %.3f\n", error_ori.
std, error_pos.
std);
134 std::vector<double> segments = {8.0, 16.0, 24.0, 32.0, 40.0};
135 std::map<double, std::pair<ov_eval::Statistics, ov_eval::Statistics>> error_rpe;
136 traj.calculate_rpe(segments, error_rpe);
139 PRINT_INFO(
"======================================\n");
141 PRINT_INFO(
"======================================\n");
142 for (
const auto &seg : error_rpe) {
143 PRINT_INFO(
"seg %d - median_ori = %.3f | median_pos = %.3f (%d samples)\n", (
int)seg.first, seg.second.first.median,
144 seg.second.second.median, (
int)seg.second.second.values.size());
148 #ifdef HAVE_PYTHONLIBS 151 std::map<std::string, std::string> params_rpe;
152 params_rpe.insert({
"notch",
"true"});
153 params_rpe.insert({
"sym",
""});
161 std::vector<double>
xticks;
162 std::vector<std::string> labels;
163 for (
const auto &seg : error_rpe) {
164 xticks.push_back(ct);
165 labels.push_back(std::to_string((
int)seg.first));
183 for (
const auto &seg : error_rpe) {
204 traj.calculate_nees(nees_ori, nees_pos);
207 PRINT_INFO(
"======================================\n");
208 PRINT_INFO(
"Normalized Estimation Error Squared\n");
209 PRINT_INFO(
"======================================\n");
211 PRINT_INFO(
"min_ori = %.3f | min_pos = %.3f\n", nees_ori.
min, nees_pos.
min);
212 PRINT_INFO(
"max_ori = %.3f | max_pos = %.3f\n", nees_ori.
max, nees_pos.
max);
213 PRINT_INFO(
"std_ori = %.3f | std_pos = %.3f\n", nees_ori.
std, nees_pos.
std);
214 PRINT_INFO(
"======================================\n");
216 #ifdef HAVE_PYTHONLIBS 218 if (!nees_ori.
values.empty() && !nees_pos.
values.empty()) {
222 for (
size_t i = 0; i < nees_ori.
timestamps.size(); i++) {
231 std::map<std::string, std::string> params_neesp, params_neeso;
232 params_neesp.insert({
"label",
"nees position"});
233 params_neesp.insert({
"linestyle",
"-"});
234 params_neesp.insert({
"color",
"blue"});
235 params_neeso.insert({
"label",
"nees orientation"});
236 params_neeso.insert({
"linestyle",
"-"});
237 params_neeso.insert({
"color",
"blue"});
266 traj.calculate_error(posx, posy, posz, orix, oriy, oriz, roll, pitch, yaw);
271 for (
size_t i = 0; i < posx.
timestamps.size(); i++) {
283 #ifdef HAVE_PYTHONLIBS 288 plot_3errors(posx, posy, posz);
310 plot_3errors(orix, oriy, oriz);
332 plot_3errors(roll, pitch, yaw);
Statistics object for a given set scalar time series values.
int main(int argc, char **argv)
void xticks(const std::vector< Numeric > &ticks, const std::vector< std::string > &labels={}, const std::map< std::string, std::string > &keywords={})
static void load_data(std::string path_traj, std::vector< double > ×, std::vector< Eigen::Matrix< double, 7, 1 >> &poses, std::vector< Eigen::Matrix3d > &cov_ori, std::vector< Eigen::Matrix3d > &cov_pos)
This will load space separated trajectory into memory.
double rmse
Root mean squared for the given values.
double mean
Mean of the given values.
std::vector< double > values
Values (e.g. error or nees at a given time)
void figure_size(size_t w, size_t h)
bool plot(const std::vector< Numeric > &x, const std::vector< Numeric > &y, const std::map< std::string, std::string > &keywords)
static double get_total_length(const std::vector< Eigen::Matrix< double, 7, 1 >> &poses)
Will calculate the total trajectory distance.
void show(const bool block=true)
std::vector< double > values_bound
Bound of these values (e.g. our expected covariance bound)
double max
Max of the given values.
double std
Standard deviation of given values.
A single run for a given dataset.
double min
Min of the given values.
static void setPrintLevel(const std::string &level)
#define PRINT_ERROR(x...)
void xlim(Numeric left, Numeric right)
void xlabel(const std::string &str, const std::map< std::string, std::string > &keywords={})
void subplot(long nrows, long ncols, long plot_number)
void title(const std::string &titlestr, const std::map< std::string, std::string > &keywords={})
void ylabel(const std::string &str, const std::map< std::string, std::string > &keywords={})
bool boxplot(const std::vector< NumericX > &x, const double &position, const double &width, const std::string &color, const std::string &linestyle, const std::map< std::string, std::string > &keywords={}, bool vert=true)
#define PRINT_DEBUG(x...)
std::vector< double > timestamps
Timestamp when these values occured at.