tools.h
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2015, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #ifndef HPP_FCL_MATH_TOOLS_H
39 #define HPP_FCL_MATH_TOOLS_H
40 
41 #include <Eigen/Dense>
42 #include <Eigen/Geometry>
43 
44 #include <cmath>
45 #include <iostream>
46 #include <limits>
47 
48 #include <hpp/fcl/data_types.h>
49 
50 namespace hpp {
51 namespace fcl {
52 
53 template <typename Derived>
54 static inline typename Derived::Scalar triple(
55  const Eigen::MatrixBase<Derived>& x, const Eigen::MatrixBase<Derived>& y,
56  const Eigen::MatrixBase<Derived>& z) {
57  return x.derived().dot(y.derived().cross(z.derived()));
58 }
59 
60 template <typename Derived1, typename Derived2, typename Derived3>
61 void generateCoordinateSystem(const Eigen::MatrixBase<Derived1>& _w,
62  const Eigen::MatrixBase<Derived2>& _u,
63  const Eigen::MatrixBase<Derived3>& _v) {
64  typedef typename Derived1::Scalar T;
65 
66  Eigen::MatrixBase<Derived1>& w = const_cast<Eigen::MatrixBase<Derived1>&>(_w);
67  Eigen::MatrixBase<Derived2>& u = const_cast<Eigen::MatrixBase<Derived2>&>(_u);
68  Eigen::MatrixBase<Derived3>& v = const_cast<Eigen::MatrixBase<Derived3>&>(_v);
69 
70  T inv_length;
71  if (std::abs(w[0]) >= std::abs(w[1])) {
72  inv_length = (T)1.0 / sqrt(w[0] * w[0] + w[2] * w[2]);
73  u[0] = -w[2] * inv_length;
74  u[1] = (T)0;
75  u[2] = w[0] * inv_length;
76  v[0] = w[1] * u[2];
77  v[1] = w[2] * u[0] - w[0] * u[2];
78  v[2] = -w[1] * u[0];
79  } else {
80  inv_length = (T)1.0 / sqrt(w[1] * w[1] + w[2] * w[2]);
81  u[0] = (T)0;
82  u[1] = w[2] * inv_length;
83  u[2] = -w[1] * inv_length;
84  v[0] = w[1] * u[2] - w[2] * u[1];
85  v[1] = -w[0] * u[2];
86  v[2] = w[0] * u[1];
87  }
88 }
89 
90 /* ----- Start Matrices ------ */
91 template <typename Derived, typename OtherDerived>
92 void relativeTransform(const Eigen::MatrixBase<Derived>& R1,
93  const Eigen::MatrixBase<OtherDerived>& t1,
94  const Eigen::MatrixBase<Derived>& R2,
95  const Eigen::MatrixBase<OtherDerived>& t2,
96  const Eigen::MatrixBase<Derived>& R,
97  const Eigen::MatrixBase<OtherDerived>& t) {
98  const_cast<Eigen::MatrixBase<Derived>&>(R) = R1.transpose() * R2;
99  const_cast<Eigen::MatrixBase<OtherDerived>&>(t) = R1.transpose() * (t2 - t1);
100 }
101 
104 template <typename Derived, typename Vector>
105 void eigen(const Eigen::MatrixBase<Derived>& m,
106  typename Derived::Scalar dout[3], Vector* vout) {
107  typedef typename Derived::Scalar Scalar;
108  Derived R(m.derived());
109  int n = 3;
110  int j, iq, ip, i;
111  Scalar tresh, theta, tau, t, sm, s, h, g, c;
112  int nrot;
113  Scalar b[3];
114  Scalar z[3];
115  Scalar v[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
116  Scalar d[3];
117 
118  for (ip = 0; ip < n; ++ip) {
119  b[ip] = d[ip] = R(ip, ip);
120  z[ip] = 0;
121  }
122 
123  nrot = 0;
124 
125  for (i = 0; i < 50; ++i) {
126  sm = 0;
127  for (ip = 0; ip < n; ++ip)
128  for (iq = ip + 1; iq < n; ++iq) sm += std::abs(R(ip, iq));
129  if (sm == 0.0) {
130  vout[0] << v[0][0], v[0][1], v[0][2];
131  vout[1] << v[1][0], v[1][1], v[1][2];
132  vout[2] << v[2][0], v[2][1], v[2][2];
133  dout[0] = d[0];
134  dout[1] = d[1];
135  dout[2] = d[2];
136  return;
137  }
138 
139  if (i < 3)
140  tresh = 0.2 * sm / (n * n);
141  else
142  tresh = 0.0;
143 
144  for (ip = 0; ip < n; ++ip) {
145  for (iq = ip + 1; iq < n; ++iq) {
146  g = 100.0 * std::abs(R(ip, iq));
147  if (i > 3 && std::abs(d[ip]) + g == std::abs(d[ip]) &&
148  std::abs(d[iq]) + g == std::abs(d[iq]))
149  R(ip, iq) = 0.0;
150  else if (std::abs(R(ip, iq)) > tresh) {
151  h = d[iq] - d[ip];
152  if (std::abs(h) + g == std::abs(h))
153  t = (R(ip, iq)) / h;
154  else {
155  theta = 0.5 * h / (R(ip, iq));
156  t = 1.0 / (std::abs(theta) + std::sqrt(1.0 + theta * theta));
157  if (theta < 0.0) t = -t;
158  }
159  c = 1.0 / std::sqrt(1 + t * t);
160  s = t * c;
161  tau = s / (1.0 + c);
162  h = t * R(ip, iq);
163  z[ip] -= h;
164  z[iq] += h;
165  d[ip] -= h;
166  d[iq] += h;
167  R(ip, iq) = 0.0;
168  for (j = 0; j < ip; ++j) {
169  g = R(j, ip);
170  h = R(j, iq);
171  R(j, ip) = g - s * (h + g * tau);
172  R(j, iq) = h + s * (g - h * tau);
173  }
174  for (j = ip + 1; j < iq; ++j) {
175  g = R(ip, j);
176  h = R(j, iq);
177  R(ip, j) = g - s * (h + g * tau);
178  R(j, iq) = h + s * (g - h * tau);
179  }
180  for (j = iq + 1; j < n; ++j) {
181  g = R(ip, j);
182  h = R(iq, j);
183  R(ip, j) = g - s * (h + g * tau);
184  R(iq, j) = h + s * (g - h * tau);
185  }
186  for (j = 0; j < n; ++j) {
187  g = v[j][ip];
188  h = v[j][iq];
189  v[j][ip] = g - s * (h + g * tau);
190  v[j][iq] = h + s * (g - h * tau);
191  }
192  nrot++;
193  }
194  }
195  }
196  for (ip = 0; ip < n; ++ip) {
197  b[ip] += z[ip];
198  d[ip] = b[ip];
199  z[ip] = 0.0;
200  }
201  }
202 
203  std::cerr << "eigen: too many iterations in Jacobi transform." << std::endl;
204 
205  return;
206 }
207 
208 template <typename Derived, typename OtherDerived>
209 bool isEqual(const Eigen::MatrixBase<Derived>& lhs,
210  const Eigen::MatrixBase<OtherDerived>& rhs,
212  100) {
213  return ((lhs - rhs).array().abs() < tol).all();
214 }
215 
216 } // namespace fcl
217 } // namespace hpp
218 
219 #endif
void generateCoordinateSystem(const Eigen::MatrixBase< Derived1 > &_w, const Eigen::MatrixBase< Derived2 > &_u, const Eigen::MatrixBase< Derived3 > &_v)
Definition: tools.h:61
Main namespace.
t
static FCL_REAL epsilon
Definition: simple.cpp:12
void eigen(const Eigen::MatrixBase< Derived > &m, typename Derived::Scalar dout[3], Vector *vout)
compute the eigen vector and eigen vector of a matrix. dout is the eigen values, vout is the eigen ve...
Definition: tools.h:105
c
list v
Definition: obb.py:45
double FCL_REAL
Definition: data_types.h:65
R
void relativeTransform(const Eigen::MatrixBase< Derived > &R1, const Eigen::MatrixBase< OtherDerived > &t1, const Eigen::MatrixBase< Derived > &R2, const Eigen::MatrixBase< OtherDerived > &t2, const Eigen::MatrixBase< Derived > &R, const Eigen::MatrixBase< OtherDerived > &t)
Definition: tools.h:92
bool isEqual(const Eigen::MatrixBase< Derived > &lhs, const Eigen::MatrixBase< OtherDerived > &rhs, const FCL_REAL tol=std::numeric_limits< FCL_REAL >::epsilon() *100)
Definition: tools.h:209
static Derived::Scalar triple(const Eigen::MatrixBase< Derived > &x, const Eigen::MatrixBase< Derived > &y, const Eigen::MatrixBase< Derived > &z)
Definition: tools.h:54


hpp-fcl
Author(s):
autogenerated on Fri Jun 2 2023 02:39:02