2 GTSAM Copyright 2010-2019, Georgia Tech Research Corporation, 3 Atlanta, Georgia 30332-0415 6 See LICENSE for the license information 8 Unit tests to ensure backwards compatibility of the Python wrapper. 12 from typing
import Iterable, List, Optional, Tuple, Union
20 from gtsam
import (BetweenFactorPose2, Cal3_S2, Cal3Bundler, CameraSetCal3_S2,
21 CameraSetCal3Bundler, IndexPair, LevenbergMarquardtParams,
22 PinholeCameraCal3_S2, PinholeCameraCal3Bundler, Point2,
23 Point2Pairs, Point3, Pose2, Pose2Pairs, Pose3, Rot2, Rot3,
24 SfmTrack2d, ShonanAveraging2, ShonanAveragingParameters2,
25 Similarity2, Similarity3, TriangulationParameters,
28 UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
32 """Tests for the backwards compatibility for the Python wrapper.""" 35 """Setup test fixtures""" 36 p1 = [-1.0, 0.0, -1.0]
38 q1 = Rot3(1.0, 0.0, 0.0, 0.0)
39 q2 = Rot3(1.0, 0.0, 0.0, 0.0)
44 self.
origin = np.array([0.0, 0.0, 0.0])
51 fx, fy, s, u0, v0 = 2, 2, 0, 0, 0
52 k1, k2, p1, p2 = 0, 0, 0, 0
67 pose2 = pose1.compose(
Pose3(Rot3(),
Point3(1, 0, 0)))
78 Estimate spatial point from image measurements using 79 rectification from a Cal3Fisheye camera model. 82 k.calibration().calibrate(pt)
95 Estimate spatial point from image measurements using 96 rectification from a Cal3Unified camera model. 99 k.calibration().calibrate(pt)
111 """Ensures that DSF generates three tracks from measurements 112 in 3 images (H=200,W=400).""" 113 kps_i0 =
Keypoints(np.array([[10.0, 20], [30, 40]]))
114 kps_i1 =
Keypoints(np.array([[50.0, 60], [70, 80], [90, 100]]))
115 kps_i2 =
Keypoints(np.array([[110.0, 120], [130, 140]]))
118 keypoints_list.append(kps_i0)
119 keypoints_list.append(kps_i1)
120 keypoints_list.append(kps_i2)
125 matches_dict[IndexPair(0, 1)] = np.array([[0, 0], [1, 1]])
126 matches_dict[IndexPair(1, 2)] = np.array([[2, 0], [1, 1]])
133 assert len(tracks) == 3
137 assert track0.numberMeasurements() == 2
138 np.testing.assert_allclose(track0.measurements[0][1],
Point2(10, 20))
139 np.testing.assert_allclose(track0.measurements[1][1],
Point2(50, 60))
140 assert track0.measurements[0][0] == 0
141 assert track0.measurements[1][0] == 1
142 np.testing.assert_allclose(
143 track0.measurementMatrix(),
149 np.testing.assert_allclose(track0.indexVector(), [0, 1])
153 np.testing.assert_allclose(
154 track1.measurementMatrix(),
161 np.testing.assert_allclose(track1.indexVector(), [0, 1, 2])
165 np.testing.assert_allclose(
166 track2.measurementMatrix(),
172 np.testing.assert_allclose(track2.indexVector(), [1, 2])
175 """Test construction of 2D SfM track.""" 177 measurements.append((0,
Point2(10, 20)))
178 track = SfmTrack2d(measurements=measurements)
180 assert track.numberMeasurements() == 1
184 Simple test that checks for equality between C++ example 185 file and the Python implementation. See 186 gtsam_unstable/examples/FixedLagSmootherExample.cpp 200 prior_mean = Pose2(0, 0, 0)
202 np.array([0.3, 0.3, 0.1]))
204 new_factors.push_back(
205 gtsam.PriorFactorPose2(X1, prior_mean, prior_noise))
206 new_values.insert(X1, prior_mean)
207 new_timestamps.insert((X1, 0.0))
215 Pose2(0.995821, 0.0231012, 0.0300001),
216 Pose2(1.49284, 0.0457247, 0.045),
217 Pose2(1.98981, 0.0758879, 0.06),
218 Pose2(2.48627, 0.113502, 0.075),
219 Pose2(2.98211, 0.158558, 0.09),
220 Pose2(3.47722, 0.211047, 0.105),
221 Pose2(3.97149, 0.270956, 0.12),
222 Pose2(4.4648, 0.338272, 0.135),
223 Pose2(4.95705, 0.41298, 0.15),
224 Pose2(5.44812, 0.495063, 0.165),
225 Pose2(5.9379, 0.584503, 0.18),
233 previous_key =
int(1000 * (time - delta_time))
234 current_key =
int(1000 * time)
237 new_timestamps.insert((current_key, time))
242 current_pose = Pose2(time * 2, 0, 0)
243 new_values.insert(current_key, current_pose)
247 odometry_measurement_1 = Pose2(0.61, -0.08, 0.02)
249 np.array([0.1, 0.1, 0.05]))
250 new_factors.push_back(
251 gtsam.BetweenFactorPose2(previous_key, current_key,
252 odometry_measurement_1,
255 odometry_measurement_2 = Pose2(0.47, 0.03, 0.01)
257 np.array([0.05, 0.05, 0.05]))
258 new_factors.push_back(
259 gtsam.BetweenFactorPose2(previous_key, current_key,
260 odometry_measurement_2,
267 smoother_batch.update(new_factors, new_values, new_timestamps)
269 estimate = smoother_batch.calculateEstimatePose2(current_key)
270 self.assertTrue(estimate.equals(ground_truth[i], 1e-4))
273 new_timestamps.clear()
275 new_factors.resize(0)
290 gfg.add(x1, np.eye(1), x0, -np.eye(1), np.ones(1), BETWEEN_NOISE)
291 gfg.add(x2, np.eye(1), x1, -np.eye(1), 2 * np.ones(1), BETWEEN_NOISE)
292 gfg.add(x0, np.eye(1), np.zeros(1), PRIOR_NOISE)
296 for key
in keys[::-1]:
297 ordering.push_back(key)
299 bn = gfg.eliminateSequential(ordering)
300 self.assertEqual(bn.size(), 3)
303 keyVector.append(keys[2])
304 ordering = gtsam.Ordering.ColamdConstrainedLastGaussianFactorGraph(
306 bn = gfg.eliminateSequential(ordering)
307 self.assertEqual(bn.size(), 3)
311 Check that optimizing for Karcher mean (which minimizes Between distance) 314 R = Rot3.Expmap(np.array([0.1, 0, 0]))
322 """Averaging 3 identity rotations should yield the identity.""" 328 aRb_expected = Rot3()
334 """Check that the InnerConstraint factor leaves the mean unchanged.""" 340 R = Rot3.Expmap(np.array([0.1, 0, 0]))
344 R12 = R.compose(R.compose(R))
345 graph.add(gtsam.BetweenFactorRot3(1, 2, R12, MODEL))
349 graph.add(gtsam.KarcherMeanFactorRot3(keys))
352 initial.insert(1, R.inverse())
364 """Ensure estimation of the Pose2 element to align two 2d point clouds succeeds. 366 Two point clouds represent horseshoe-shapes of the same size, just rotated and translated: 392 aTb = Pose2.Align(ab_pairs)
393 self.assertIsNotNone(aTb)
395 for pt_a, pt_b
in zip(pts_a, pts_b):
396 pt_a_ = aTb.transformFrom(pt_b)
397 np.testing.assert_allclose(pt_a, pt_a_)
400 A = np.array(pts_a).T
401 B = np.array(pts_b).T
402 aTb = Pose2.Align(A, B)
403 self.assertIsNotNone(aTb)
405 for pt_a, pt_b
in zip(pts_a, pts_b):
406 pt_a_ = aTb.transformFrom(pt_b)
407 np.testing.assert_allclose(pt_a, pt_a_)
410 """Test if Align method can align 2 squares.""" 411 square = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]],
414 transformed = sTt.transformTo(square)
418 st_pairs.append((square[:, j], transformed[:, j]))
421 estimated_sTt = Pose3.Align(st_pairs)
425 estimated_sTt = Pose3.Align(square, transformed)
429 """Check if ShonanAveraging2 constructor works when not initialized from g2o file. 446 Pose2(Rot2.fromDegrees(0), np.array([0, 0])),
447 Pose2(Rot2.fromDegrees(90), np.array([0, 4])),
448 Pose2(Rot2.fromDegrees(0), np.array([4, 0])),
451 edges = [(0, 1), (1, 2), (0, 2)]
452 i2Ri1_dict = {(i1, i2):
454 for (i1, i2)
in edges}
456 lm_params = LevenbergMarquardtParams.CeresDefaults()
458 shonan_params.setUseHuber(
False)
459 shonan_params.setCertifyOptimality(
True)
463 for (i1, i2), i2Ri1
in i2Ri1_dict.items():
464 i2Ti1 = Pose2(i2Ri1, np.zeros(2))
465 between_factors.append(
468 obj = ShonanAveraging2(between_factors, shonan_params)
469 initial = obj.initializeRandomly()
470 result_values, _ = obj.run(initial, min_p=2, max_p=100)
472 wRi_list = [result_values.atRot2(i)
for i
in range(num_images)]
473 thetas_deg = np.array([wRi.degrees()
for wRi
in wRi_list])
476 thetas_deg = thetas_deg % 360
477 thetas_deg -= thetas_deg[0]
479 expected_thetas_deg = np.array([0.0, 90.0, 0.0])
480 np.testing.assert_allclose(thetas_deg, expected_thetas_deg, atol=0.1)
483 """Test Align of list of Pose2Pair. 487 same scale (no gauge ambiguity) 488 world frame has poses rotated about 180 degrees. 489 world and egovehicle frame translated by 15 meters w.r.t. each other 491 R180 = Rot2.fromDegrees(180)
495 eTo0 = Pose2(Rot2(), np.array([5, 0]))
496 eTo1 = Pose2(Rot2(), np.array([10, 0]))
497 eTo2 = Pose2(Rot2(), np.array([15, 0]))
499 eToi_list = [eTo0, eTo1, eTo2]
503 wTo0 = Pose2(R180, np.array([-10, 0]))
504 wTo1 = Pose2(R180, np.array([-5, 0]))
505 wTo2 = Pose2(R180, np.array([0, 0]))
507 wToi_list = [wTo0, wTo1, wTo2]
512 wSe = Similarity2.Align(we_pairs)
514 for wToi, eToi
in zip(wToi_list, eToi_list):
518 """Test if Align Pose2Pairs method can account for gauge ambiguity. 522 with gauge ambiguity (2x scale) 523 world frame has poses rotated by 90 degrees. 524 world and egovehicle frame translated by 11 meters w.r.t. each other 526 R90 = Rot2.fromDegrees(90)
530 eTo0 = Pose2(Rot2(), np.array([1, 0]))
531 eTo1 = Pose2(Rot2(), np.array([2, 0]))
532 eTo2 = Pose2(Rot2(), np.array([4, 0]))
534 eToi_list = [eTo0, eTo1, eTo2]
538 wTo0 = Pose2(R90, np.array([0, 12]))
539 wTo1 = Pose2(R90, np.array([0, 14]))
540 wTo2 = Pose2(R90, np.array([0, 18]))
542 wToi_list = [wTo0, wTo1, wTo2]
547 wSe = Similarity2.Align(we_pairs)
549 for wToi, eToi
in zip(wToi_list, eToi_list):
553 """Test if Align Pose2Pairs method can account for gauge ambiguity. 555 Make sure a big and small square can be aligned. 556 The u's represent a big square (10x10), and v's represents a small square (4x4). 560 with gauge ambiguity (2.5x scale) 563 R0 = Rot2.fromDegrees(0)
564 R90 = Rot2.fromDegrees(90)
565 R180 = Rot2.fromDegrees(180)
566 R270 = Rot2.fromDegrees(270)
568 aTi0 = Pose2(R0, np.array([2, 3]))
569 aTi1 = Pose2(R90, np.array([12, 3]))
570 aTi2 = Pose2(R180, np.array([12, 13]))
571 aTi3 = Pose2(R270, np.array([2, 13]))
573 aTi_list = [aTi0, aTi1, aTi2, aTi3]
575 bTi0 = Pose2(R0, np.array([4, 3]))
576 bTi1 = Pose2(R90, np.array([8, 3]))
577 bTi2 = Pose2(R180, np.array([8, 7]))
578 bTi3 = Pose2(R270, np.array([4, 7]))
580 bTi_list = [bTi0, bTi1, bTi2, bTi3]
585 aSb = Similarity2.Align(ab_pairs)
587 for aTi, bTi
in zip(aTi_list, bTi_list):
591 """Test Align Pose3Pairs method. 595 same scale (no gauge ambiguity) 596 world frame has poses rotated about x-axis (90 degree roll) 597 world and egovehicle frame translated by 15 meters w.r.t. each other 599 Rx90 = Rot3.Rx(np.deg2rad(90))
603 eTo0 =
Pose3(Rot3(), np.array([5, 0, 0]))
604 eTo1 =
Pose3(Rot3(), np.array([10, 0, 0]))
605 eTo2 =
Pose3(Rot3(), np.array([15, 0, 0]))
607 eToi_list = [eTo0, eTo1, eTo2]
611 wTo0 =
Pose3(Rx90, np.array([-10, 0, 0]))
612 wTo1 =
Pose3(Rx90, np.array([-5, 0, 0]))
613 wTo2 =
Pose3(Rx90, np.array([0, 0, 0]))
615 wToi_list = [wTo0, wTo1, wTo2]
620 wSe = Similarity3.Align(we_pairs)
622 for wToi, eToi
in zip(wToi_list, eToi_list):
626 """Test if Align Pose3Pairs method can account for gauge ambiguity. 630 with gauge ambiguity (2x scale) 631 world frame has poses rotated about z-axis (90 degree yaw) 632 world and egovehicle frame translated by 11 meters w.r.t. each other 634 Rz90 = Rot3.Rz(np.deg2rad(90))
638 eTo0 =
Pose3(Rot3(), np.array([1, 0, 0]))
639 eTo1 =
Pose3(Rot3(), np.array([2, 0, 0]))
640 eTo2 =
Pose3(Rot3(), np.array([4, 0, 0]))
642 eToi_list = [eTo0, eTo1, eTo2]
646 wTo0 =
Pose3(Rz90, np.array([0, 12, 0]))
647 wTo1 =
Pose3(Rz90, np.array([0, 14, 0]))
648 wTo2 =
Pose3(Rz90, np.array([0, 18, 0]))
650 wToi_list = [wTo0, wTo1, wTo2]
655 wSe = Similarity3.Align(we_pairs)
657 for wToi, eToi
in zip(wToi_list, eToi_list):
661 """Test if Align Pose3Pairs method can account for gauge ambiguity. 663 Make sure a big and small square can be aligned. 664 The u's represent a big square (10x10), and v's represents a small square (4x4). 668 with gauge ambiguity (2.5x scale) 671 R0 = Rot3.Rz(np.deg2rad(0))
672 R90 = Rot3.Rz(np.deg2rad(90))
673 R180 = Rot3.Rz(np.deg2rad(180))
674 R270 = Rot3.Rz(np.deg2rad(270))
676 aTi0 =
Pose3(R0, np.array([2, 3, 0]))
677 aTi1 =
Pose3(R90, np.array([12, 3, 0]))
678 aTi2 =
Pose3(R180, np.array([12, 13, 0]))
679 aTi3 =
Pose3(R270, np.array([2, 13, 0]))
681 aTi_list = [aTi0, aTi1, aTi2, aTi3]
683 bTi0 =
Pose3(R0, np.array([4, 3, 0]))
684 bTi1 =
Pose3(R90, np.array([8, 3, 0]))
685 bTi2 =
Pose3(R180, np.array([8, 7, 0]))
686 bTi3 =
Pose3(R270, np.array([4, 7, 0]))
688 bTi_list = [bTi0, bTi1, bTi2, bTi3]
693 aSb = Similarity3.Align(ab_pairs)
695 for aTi, bTi
in zip(aTi_list, bTi_list):
700 calibration: Union[Cal3Bundler, Cal3_S2],
701 camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
702 cal_params: Iterable[Iterable[Union[int, float]]],
703 camera_set: Optional[Union[CameraSetCal3Bundler,
704 CameraSetCal3_S2]] =
None,
705 ) -> Tuple[List[Point2], Union[CameraSetCal3Bundler, CameraSetCal3_S2,
706 List[Cal3Bundler], List[Cal3_S2]]]:
708 Generate vector of measurements for given calibration and camera model. 711 calibration: Camera calibration e.g. Cal3_S2 712 camera_model: Camera model e.g. PinholeCameraCal3_S2 713 cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2] 714 camera_set: Cameraset object (for individual calibrations) 717 list of measurements and list/CameraSet object for cameras 719 if camera_set
is not None:
720 cameras = camera_set()
727 camera = camera_model(pose, K)
728 cameras.append(camera)
730 measurements.append(z)
732 return measurements, cameras
735 """Tests triangulation with shared Cal3_S2 calibration""" 737 sharedCal = (1500, 1200, 0, 640, 480)
741 camera_model=PinholeCameraCal3_S2,
742 cal_params=(sharedCal, sharedCal))
754 measurements_noisy.append(measurements[0] - np.array([0.1, 0.5]))
755 measurements_noisy.append(measurements[1] - np.array([-0.2, 0.3]))
767 """Ensure triangulation with a robust model works.""" 768 sharedCal = Cal3_S2(1500, 1200, 0, 640, 480)
771 landmark =
Point3(5, 0.5, 1.2)
775 pose3 = pose1 *
Pose3(Rot3.Ypr(0.1, 0.2, 0.1),
Point3(0.1, -2, -0.1))
781 z1: Point2 = camera1.project(landmark)
782 z2: Point2 = camera2.project(landmark)
783 z3: Point2 = camera3.project(landmark)
794 self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
797 measurements[0] +=
Point2(100, 120)
806 self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
807 self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
816 self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
829 self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
832 """Check safe triangulation function.""" 833 pose1, pose2 = self.
poses 835 K1 = Cal3_S2(1500, 1200, 0, 640, 480)
840 K2 = Cal3_S2(1600, 1300, 0, 650, 440)
848 cameras.append(camera1)
849 cameras.append(camera2)
852 measurements.append(z1)
853 measurements.append(z2)
855 landmarkDistanceThreshold = 10
857 params = TriangulationParameters(1.0,
False, landmarkDistanceThreshold)
859 cameras, measurements, params)
861 self.assertTrue(actual.valid())
863 landmarkDistanceThreshold = 4
864 params2 = TriangulationParameters(1.0,
False,
865 landmarkDistanceThreshold)
867 self.assertTrue(actual.farPoint())
871 pose3 = pose1 *
Pose3(Rot3.Ypr(0.1, 0.2, 0.1),
Point3(0.1, -2, -.1))
872 K3 = Cal3_S2(700, 500, 0, 640, 480)
876 cameras.append(camera3)
877 measurements.append(z3 +
Point2(10, -10))
879 landmarkDistanceThreshold = 10
880 outlierThreshold = 100
881 params3 = TriangulationParameters(1.0,
False,
882 landmarkDistanceThreshold,
885 self.assertTrue(actual.valid())
889 params4 = TriangulationParameters(1.0,
False,
890 landmarkDistanceThreshold,
893 self.assertTrue(actual.outlier())
896 if __name__ ==
"__main__":
def test_align_poses2_along_straight_line_gauge(self)
std::vector< Rot3, Eigen::aligned_allocator< Rot3 > > Rot3Vector
std::vector of Rot3s, used in Matlab wrapper
std::vector< Pose3 > Pose3Vector
triangulation_poses
Set up two camera poses Looking along X-axis, 1 meter above ground plane (x-y)
def test_align_squares(self)
T between(const T &t1, const T &t2)
def test_constructorBetweenFactorPose2s(self)
def gtsamAssertEquals(self, actual, expected, tol=1e-9)
CameraSet< PinholeCamera< Cal3_S2 > > CameraSetCal3_S2
def test_align_poses3_along_straight_line(self)
def test_align_poses2_along_straight_line(self)
def test_FixedLagSmootherExample(self)
static shared_ptr Create(const RobustModel::shared_ptr &robust, const NoiseModel::shared_ptr noise)
A set of cameras, all with their own calibration.
def test_TriangulationExample(self)
EIGEN_DEVICE_FUNC const InverseReturnType inverse() const
static shared_ptr Create(size_t dim)
T compose(const T &t1, const T &t2)
std::vector< SfmTrack2d > tracksFromPairwiseMatches(const MatchIndicesMap &matches, const KeypointsVector &keypoints, bool verbose)
Creates a list of tracks from 2d point correspondences.
def test_align_poses3_along_straight_line_gauge(self)
ShonanAveragingParameters< 2 > ShonanAveragingParameters2
def test_Cal3Fisheye_triangulation_rectify(self)
std::vector< Point2Pair > Point2Pairs
std::vector< Pose2Pair > Pose2Pairs
gtsam::PinholeCamera< gtsam::Cal3_S2 > PinholeCameraCal3_S2
def test_align_poses2_scaled_squares(self)
def test_find_karcher_mean_identity(self)
Point3 triangulatePoint3(const CameraSet< PinholeCamera< CALIBRATION >> &cameras, const Point2Vector &measurements, double rank_tol=1e-9, bool optimize=false, const SharedNoiseModel &model=nullptr, const bool useLOST=false)
Pinhole-specific version.
The most common 5DOF 3D->2D calibration.
T FindKarcherMean(std::initializer_list< T > &&rotations)
def test_outliers_and_far_landmarks(self)
TriangulationResult triangulateSafe(const CameraSet< CAMERA > &cameras, const typename CAMERA::MeasurementVector &measured, const TriangulationParameters ¶ms)
triangulateSafe: extensive checking of the outcome
def test_triangulation_robust_three_poses(self)
def test_sfm_track_2d_constructor(self)
def generate_measurements
def test_Cal3Unified_triangulation_rectify(self)
Calibration of a omni-directional camera with mirror + lens radial distortion.
std::vector< std::pair< Pose3, Pose3 > > Pose3Pairs
def test_align_poses3_scaled_squares(self)
static shared_ptr Sigmas(const Vector &sigmas, bool smart=true)
Double_ range(const Point2_ &p, const Point2_ &q)
std::vector< Point2, Eigen::aligned_allocator< Point2 > > Point2Vector
int optimize(const SfmData &db, const NonlinearFactorGraph &graph, const Values &initial, bool separateCalibration=false)
std::vector< BetweenFactor< Pose2 >::shared_ptr > BetweenFactorPose2s
FastVector< Key > KeyVector
Define collection type once and for all - also used in wrappers.
Rot3 rotation(const Pose3 &pose, OptionalJacobian< 3, 6 > H)
size_t len(handle h)
Get the length of a Python object.
std::vector< Point3Pair > Point3Pairs
def test_track_generation(self)
static shared_ptr Create(double k, const ReweightScheme reweight=Block)