stl_iterators.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <iterator>
12 #include <numeric>
13 
14 template< class Iterator >
15 std::reverse_iterator<Iterator>
17 {
18  return std::reverse_iterator<Iterator>(i);
19 }
20 
21 #if !EIGEN_HAS_CXX11
22 template<class ForwardIt>
23 ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt)
24 {
25  if (firstIt != lastIt) {
26  ForwardIt next = firstIt;
27  while (++next != lastIt) {
28  if (*next < *firstIt)
29  return next;
30  firstIt = next;
31  }
32  }
33  return lastIt;
34 }
35 template<class ForwardIt>
36 bool is_sorted(ForwardIt firstIt, ForwardIt lastIt)
37 {
38  return ::is_sorted_until(firstIt, lastIt) == lastIt;
39 }
40 #else
41 using std::is_sorted;
42 #endif
43 
44 template<typename XprType>
45 bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; }
46 
47 template<typename XprType>
48 bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; }
49 
50 template<typename Iter>
52 {
53 #if EIGEN_HAS_CXX11
56 #endif
57  Iter it2;
58  it2 = it;
59  return (it==it2);
60 }
61 
62 template<typename Xpr>
64 {
65  const Xpr& cxpr(xpr);
66  Index i = 0;
67 
68  i = 0;
69  for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
70 
71  i = 0;
72  for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
73 
74  i = 0;
75  for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
76 
77  i = 0;
78  for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
79 
80  {
81  // simple API check
82  typename Xpr::const_iterator cit = xpr.begin();
83  cit = xpr.cbegin();
84 
85  #if EIGEN_HAS_CXX11
86  auto tmp1 = xpr.begin();
87  VERIFY(tmp1==xpr.begin());
88  auto tmp2 = xpr.cbegin();
89  VERIFY(tmp2==xpr.cbegin());
90  #endif
91  }
92 
93  VERIFY( xpr.end() -xpr.begin() == xpr.size() );
94  VERIFY( xpr.cend()-xpr.begin() == xpr.size() );
95  VERIFY( xpr.end() -xpr.cbegin() == xpr.size() );
96  VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() );
97 
98  if(xpr.size()>0) {
99  VERIFY(xpr.begin() != xpr.end());
100  VERIFY(xpr.begin() < xpr.end());
101  VERIFY(xpr.begin() <= xpr.end());
102  VERIFY(!(xpr.begin() == xpr.end()));
103  VERIFY(!(xpr.begin() > xpr.end()));
104  VERIFY(!(xpr.begin() >= xpr.end()));
105 
106  VERIFY(xpr.cbegin() != xpr.end());
107  VERIFY(xpr.cbegin() < xpr.end());
108  VERIFY(xpr.cbegin() <= xpr.end());
109  VERIFY(!(xpr.cbegin() == xpr.end()));
110  VERIFY(!(xpr.cbegin() > xpr.end()));
111  VERIFY(!(xpr.cbegin() >= xpr.end()));
112 
113  VERIFY(xpr.begin() != xpr.cend());
114  VERIFY(xpr.begin() < xpr.cend());
115  VERIFY(xpr.begin() <= xpr.cend());
116  VERIFY(!(xpr.begin() == xpr.cend()));
117  VERIFY(!(xpr.begin() > xpr.cend()));
118  VERIFY(!(xpr.begin() >= xpr.cend()));
119  }
120 }
121 
122 template<typename Scalar, int Rows, int Cols>
123 void test_stl_iterators(int rows=Rows, int cols=Cols)
124 {
126  #if EIGEN_HAS_CXX11
127  typedef Matrix<Scalar,1,Cols> RowVectorType;
128  #endif
129  typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
130  typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
131  VectorType v = VectorType::Random(rows);
132  const VectorType& cv(v);
133  ColMatrixType A = ColMatrixType::Random(rows,cols);
134  const ColMatrixType& cA(A);
135  RowMatrixType B = RowMatrixType::Random(rows,cols);
136 
137  Index i, j;
138 
139  // Verify that iterators are default constructible (See bug #1900)
140  {
145 
148  VERIFY( is_default_constructible_and_assignable(cA.row(0).begin()));
150 
153  }
154 
155  // Check we got a fast pointer-based iterator when expected
156  {
159  VERIFY( is_pointer_based_stl_iterator(cv.begin()) );
161 
162  j = internal::random<Index>(0,A.cols()-1);
163  VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) );
164  VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) );
165  VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) );
166  VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) );
167 
168  i = internal::random<Index>(0,A.rows()-1);
169  VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) );
170  VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) );
171  VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) );
172  VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) );
173 
174  VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) );
175  VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) );
176  VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) );
177  VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) );
178 
179  VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) );
180  VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) );
181 
182  VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) );
183  VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) );
184  }
185 
186  {
188  check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1)));
189  check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1)));
191  }
192 
193 #if EIGEN_HAS_CXX11
194  // check swappable
195  {
196  using std::swap;
197  // pointer-based
198  {
199  VectorType v_copy = v;
200  auto a = v.begin();
201  auto b = v.end()-1;
202  swap(a,b);
203  VERIFY_IS_EQUAL(v,v_copy);
204  VERIFY_IS_EQUAL(*b,*v.begin());
205  VERIFY_IS_EQUAL(*b,v(0));
206  VERIFY_IS_EQUAL(*a,v.end()[-1]);
207  VERIFY_IS_EQUAL(*a,v(last));
208  }
209 
210  // generic
211  {
212  RowMatrixType B_copy = B;
213  auto Br = B.reshaped();
214  auto a = Br.begin();
215  auto b = Br.end()-1;
216  swap(a,b);
217  VERIFY_IS_EQUAL(B,B_copy);
218  VERIFY_IS_EQUAL(*b,*Br.begin());
219  VERIFY_IS_EQUAL(*b,Br(0));
220  VERIFY_IS_EQUAL(*a,Br.end()[-1]);
221  VERIFY_IS_EQUAL(*a,Br(last));
222  }
223  }
224 
225  // check non-const iterator with for-range loops
226  {
227  i = 0;
228  for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
229 
230  j = internal::random<Index>(0,A.cols()-1);
231  i = 0;
232  for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
233 
234  i = 0;
235  for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
236 
237  j = 0;
238  i = internal::random<Index>(0,A.rows()-1);
239  for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
240 
241  i = 0;
242  for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
243  }
244 
245  // same for const_iterator
246  {
247  i = 0;
248  for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
249 
250  i = 0;
251  for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
252 
253  j = 0;
254  i = internal::random<Index>(0,A.rows()-1);
255  for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
256  }
257 
258  // check reshaped() on row-major
259  {
260  i = 0;
262  for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
263  }
264 
265  // check write access
266  {
267  VectorType w(v.size());
268  i = 0;
269  for(auto& x : w) { x = v(i++); }
270  VERIFY_IS_EQUAL(v,w);
271  }
272 
273  // check for dangling pointers
274  {
275  // no dangling because pointer-based
276  {
277  j = internal::random<Index>(0,A.cols()-1);
278  auto it = A.col(j).begin();
279  for(i=0;i<rows;++i) {
280  VERIFY_IS_EQUAL(it[i],A(i,j));
281  }
282  }
283 
284  // no dangling because pointer-based
285  {
286  i = internal::random<Index>(0,A.rows()-1);
287  auto it = A.row(i).begin();
288  for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
289  }
290 
291  {
292  j = internal::random<Index>(0,A.cols()-1);
293  // this would produce a dangling pointer:
294  // auto it = (A+2*A).col(j).begin();
295  // we need to name the temporary expression:
296  auto tmp = (A+2*A).col(j);
297  auto it = tmp.begin();
298  for(i=0;i<rows;++i) {
299  VERIFY_IS_APPROX(it[i],3*A(i,j));
300  }
301  }
302  }
303 
304  {
305  // check basic for loop on vector-wise iterators
306  j=0;
307  for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
308  VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
309  VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
310  }
311  j=0;
312  for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
313  (*it).coeffRef(0) = (*it).coeff(0); // compilation check
314  it->coeffRef(0) = it->coeff(0); // compilation check
315  VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
316  VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
317  }
318 
319  // check valuetype gives us a copy
320  j=0;
321  for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
322  typename decltype(it)::value_type tmp = *it;
323  VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() );
324  VERIFY_IS_APPROX( tmp, A.col(j) );
325  }
326  }
327 
328 #endif
329 
330  if(rows>=3) {
331  VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));
332 
333  VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1));
334  }
335 
336  if(cols>=3) {
337  VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1));
338  }
339 
340  // check std::sort
341  {
342  // first check that is_sorted returns false when required
343  if(rows>=2)
344  {
345  v(1) = v(0)-Scalar(1);
346  #if EIGEN_HAS_CXX11
347  VERIFY(!is_sorted(std::begin(v),std::end(v)));
348  #else
349  VERIFY(!is_sorted(v.cbegin(),v.cend()));
350  #endif
351  }
352 
353  // on a vector
354  {
355  std::sort(v.begin(),v.end());
356  VERIFY(is_sorted(v.begin(),v.end()));
358  }
359 
360  // on a column of a column-major matrix -> pointer-based iterator and default increment
361  {
362  j = internal::random<Index>(0,A.cols()-1);
363  // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
364  typename ColMatrixType::ColXpr Acol = A.col(j);
365  std::sort(Acol.begin(),Acol.end());
366  VERIFY(is_sorted(Acol.cbegin(),Acol.cend()));
367  A.setRandom();
368 
369  std::sort(A.col(j).begin(),A.col(j).end());
370  VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend()));
371  A.setRandom();
372  }
373 
374  // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
375  {
376  i = internal::random<Index>(0,A.rows()-1);
377  typename ColMatrixType::RowXpr Arow = A.row(i);
378  VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols);
379  std::sort(Arow.begin(),Arow.end());
380  VERIFY(is_sorted(Arow.cbegin(),Arow.cend()));
381  A.setRandom();
382 
383  std::sort(A.row(i).begin(),A.row(i).end());
384  VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend()));
385  A.setRandom();
386  }
387 
388  // with a generic iterator
389  {
391  std::sort(B1.begin(),B1.end());
392  VERIFY(is_sorted(B1.cbegin(),B1.cend()));
393  B.setRandom();
394 
395  // assertion because nested expressions are different
396  // std::sort(B.reshaped().begin(),B.reshaped().end());
397  // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
398  // B.setRandom();
399  }
400  }
401 
402  // check with partial_sum
403  {
404  j = internal::random<Index>(0,A.cols()-1);
405  typename ColMatrixType::ColXpr Acol = A.col(j);
406  std::partial_sum(Acol.begin(), Acol.end(), v.begin());
407  VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
408 
409  // inplace
410  std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
411  VERIFY_IS_APPROX(v, Acol);
412  }
413 
414  // stress random access as required by std::nth_element
415  if(rows>=3)
416  {
417  v.setRandom();
418  VectorType v1 = v;
419  std::sort(v1.begin(),v1.end());
420  std::nth_element(v.begin(), v.begin()+rows/2, v.end());
421  VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
422 
423  v.setRandom();
424  v1 = v;
425  std::sort(v1.begin()+rows/2,v1.end());
426  std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
427  VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
428  }
429 
430 #if EIGEN_HAS_CXX11
431  // check rows/cols iterators with range-for loops
432  {
433  j = 0;
434  for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
435  j = 0;
436  for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
437 
438  j = 0;
439  for(auto c : B.colwise()) {
440  i = 0;
441  for(auto& x : c) {
442  VERIFY_IS_EQUAL(x, B(i,j));
443  x = A(i,j);
444  ++i;
445  }
446  ++j;
447  }
448  VERIFY_IS_APPROX(A,B);
449  B.setRandom();
450 
451  i = 0;
452  for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
453  i = 0;
454  for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
455  }
456 
457 
458  // check rows/cols iterators with STL algorithms
459  {
460  RowVectorType row = RowVectorType::Random(cols);
461  A.rowwise() = row;
462  VERIFY( std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
463  VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
464 
465  VectorType col = VectorType::Random(rows);
466  A.colwise() = col;
467  VERIFY( std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
468  VERIFY( std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
469  VERIFY( std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
470  VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
471 
472  i = internal::random<Index>(0,A.rows()-1);
473  A.setRandom();
474  A.row(i).setZero();
475  VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(), i );
476  VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().rbegin(), (A.rows()-1) - i );
477 
478  j = internal::random<Index>(0,A.cols()-1);
479  A.setRandom();
480  A.col(j).setZero();
481  VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(), j );
482  VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().rbegin(), (A.cols()-1) - j );
483  }
484 
485  {
486  using VecOp = VectorwiseOp<ArrayXXi, 0>;
487  STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value ));
488  STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend ())>::value ));
489  #if EIGEN_COMP_CXXVER>=14
490  STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value ));
491  STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend (std::declval<const VecOp&>()))>::value ));
492  #endif
493  }
494 
495 #endif
496 }
497 
498 
499 #if EIGEN_HAS_CXX11
500 // When the compiler sees expression IsContainerTest<C>(0), if C is an
501 // STL-style container class, the first overload of IsContainerTest
502 // will be viable (since both C::iterator* and C::const_iterator* are
503 // valid types and NULL can be implicitly converted to them). It will
504 // be picked over the second overload as 'int' is a perfect match for
505 // the type of argument 0. If C::iterator or C::const_iterator is not
506 // a valid type, the first overload is not viable, and the second
507 // overload will be picked.
508 template <class C,
509  class Iterator = decltype(::std::declval<const C&>().begin()),
510  class = decltype(::std::declval<const C&>().end()),
511  class = decltype(++::std::declval<Iterator&>()),
512  class = decltype(*::std::declval<Iterator>()),
513  class = typename C::const_iterator>
514 bool IsContainerType(int /* dummy */) { return true; }
515 
516 template <class C>
517 bool IsContainerType(long /* dummy */) { return false; }
518 
519 template <typename Scalar, int Rows, int Cols>
520 void test_stl_container_detection(int rows=Rows, int cols=Cols)
521 {
523  typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
524  typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
525 
526  ColMatrixType A = ColMatrixType::Random(rows, cols);
527  RowMatrixType B = RowMatrixType::Random(rows, cols);
528 
529  Index i = 1;
530 
531  using ColMatrixColType = decltype(A.col(i));
532  using ColMatrixRowType = decltype(A.row(i));
533  using RowMatrixColType = decltype(B.col(i));
534  using RowMatrixRowType = decltype(B.row(i));
535 
536  // Vector and matrix col/row are valid Stl-style container.
537  VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
538  VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
539  VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
540  VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
541  VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
542 
543  // But the matrix itself is not a valid Stl-style container.
544  VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
545  VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
546 }
547 #endif
548 
549 EIGEN_DECLARE_TEST(stl_iterators)
550 {
551  for(int i = 0; i < g_repeat; i++) {
552  CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() ));
553  CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() ));
554  CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
555  CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
556  }
557 
558 #if EIGEN_HAS_CXX11
559  CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() ));
560  CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() ));
561 #endif
562 }
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
Definition: bench_gemm.cpp:49
Block< Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajor > RowXpr
Definition: BlockMethods.h:17
SCALAR Scalar
Definition: bench_gemm.cpp:46
#define VERIFY_IS_NOT_EQUAL(a, b)
Definition: main.h:387
void test_stl_iterators(int rows=Rows, int cols=Cols)
Scalar * b
Definition: benchVecAdd.cpp:17
Vector v1
const Block< const Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ConstColXpr
Definition: BlockMethods.h:15
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
#define STATIC_CHECK(COND)
Definition: main.h:397
Double_ distance(const OrientedPlane3_ &p)
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ColXpr
Definition: BlockMethods.h:14
Pseudo expression providing broadcasting and partial reduction operations.
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:48
bool is_default_constructible_and_assignable(const Iter &it)
void check_begin_end_for_loop(Xpr xpr)
static const symbolic::SymbolExpr< internal::symbolic_last_tag > last
std::reverse_iterator< Iterator > make_reverse_iterator(Iterator i)
bool is_sorted(ForwardIt firstIt, ForwardIt lastIt)
#define VERIFY_IS_APPROX(a, b)
int EIGEN_BLAS_FUNC() swap(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Definition: level1_impl.h:130
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
#define CALL_SUBTEST_1(FUNC)
bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator< XprType > &)
m row(1)
static int g_repeat
Definition: main.h:169
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Array< int, Dynamic, 1 > v
bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator< XprType > &)
RowVector3d w
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)
static const int Cols
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:50
std::is_same< bools< Ts::value..., true >, bools< true, Ts::value... > > all_of
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, Index > >::type seq(FirstType f, LastType l)
#define VERIFY(a)
Definition: main.h:380
static EIGEN_DEPRECATED const end_t end
ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt)
m col(1)
Expression of a fixed-size or dynamic-size reshape.
Definition: Reshaped.h:96
EIGEN_DECLARE_TEST(stl_iterators)
The matrix class, also used for vectors and row-vectors.
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
std::ptrdiff_t j


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:36:20