14 # pragma warning (disable: 4127) 34 _f = geometricp ? f_J2 : J2ToFlattening(_a, _GM, _omega, f_J2);
38 _J2 = geometricp ? FlatteningToJ2(_a, _GM, _omega, f_J2) : f_J2;
40 _ep2 = _e2 / (1 - _e2);
41 real ex2 = _f < 0 ? -_e2 : _ep2;
42 _Q0 = Qf(ex2, _f < 0);
46 _U0 = _GM * atanzz(ex2, _f < 0) / _b + _aomega2 / 3;
47 real P = Hf(ex2, _f < 0) / (6 * _Q0);
49 _gammae = _GM / (_a * _b) - (1 + P) * _a * _omega2;
51 _gammap = _GM / (_a * _a) + 2 * P * _b * _omega2;
54 _k = -_e2 * _GM / (_a * _b) +
55 _omega2 * (P * (_a + 2 * _b * (1 - _f)) + _a);
57 _fstar = (-_f * _GM / (_a * _b) + _omega2 * (P * (_a + 2 * _b) + _a)) /
63 Initialize(a, GM, omega, f_J2, geometricp);
68 throw GeographicErr(
"Gravitational constant is not positive");
70 if (!(omega == 0 && f == 0 && J2 == 0)) {
72 if (J2 > 0 && Math::isfinite(J2) && geometricp)
74 if (!(J2 > 0 && Math::isfinite(J2)) && !geometricp)
76 if (!(Math::isfinite(omega) && omega != 0))
80 Initialize(a, GM, omega, geometricp ? f : J2, geometricp);
105 static const real lg2eps_ =
127 return 1/
real(5) + x * atan7series(x);
135 real y = alt ? -x / (1 +
x) : x;
136 return !(4 *
abs(y) < 1) ?
137 ((1 + 3/y) * atanzz(x, alt) - 3/
y) / (2 * y) :
138 (3 * (3 +
y) * atan5series(y) - 1) / 6;
147 real y = alt ? -x / (1 +
x) : x;
148 return !(4 *
abs(y) < 1) ?
149 (3 * (1 + 1/y) * (1 - atanzz(x, alt)) - 1) /
y :
150 1 - 3 * (1 +
y) * atan5series(y);
159 real y = alt ? -x / (1 +
x) : x;
160 return !(4 *
abs(y) < 1) ?
161 ((9 + 15/y) * atanzz(x, alt) - 4 - 15/
y) / (6 *
Math::sq(y)) :
162 ((25 + 15*y) * atan7series(y) + 3)/10;
171 for (
int j = n;
j--;)
174 -3 * e2n * ((1 -
n) + 5 * n * _J2 / _e2) / ((2 * n + 1) * (2 * n + 3));
189 clam = p != 0 ? X/
p : 1,
190 slam = p != 0 ? Y/
p : 0,
192 if (_f < 0)
swap(p, Z);
199 u =
sqrt((Q >= 0 ? (Q + disc) : t2 / (disc - Q)) / 2),
203 cbet = u != 0 ? p * u :
p,
205 sbet = s != 0 ? sbet/
s : 1;
206 cbet = s != 0 ? cbet/
s : 0;
217 bu = _b / (u != 0 || _f < 0 ? u : _E),
219 q = ((u != 0 || _f < 0 ? Qf(z2, _f < 0) :
Math::pi() / 4) / _Q0) *
221 qp = _b *
Math::sq(bu) * (u != 0 || _f < 0 ? Hf(z2, _f < 0) : 2) / _Q0,
224 Vres = _GM * (u != 0 || _f < 0 ?
225 atanzz(z2, _f < 0) / u :
226 Math::pi() / (2 * _E)) + _aomega2 *
q * ang,
228 gamu = - (_GM + (_aomega2 * qp * ang)) * invw /
Math::sq(uE),
229 gamb = _aomega2 *
q * sbet * cbet * invw / uE,
231 gamp = t * cbet * gamu - invw * sbet * gamb;
233 GammaX = gamp * clam;
234 GammaY = gamp * slam;
235 GammaZ = invw * sbet * gamu + t * cbet * gamb;
249 real Ures =
V0(X, Y, Z, gammaX, gammaY, gammaZ) + Phi(X, Y, fX, fY);
259 _earth.IntForward(lat, 0, h, X, Y, Z, M);
260 real gammaX, gammaY, gammaZ,
261 Ures =
U(X, Y, Z, gammaX, gammaY, gammaZ);
263 gammay = M[1] * gammaX + M[4] * gammaY + M[7] * gammaZ;
264 gammaz = M[2] * gammaX + M[5] * gammaY + M[8] * gammaZ;
281 if (J2 == J0)
return 1;
289 e2 =
min(ep2 / (1 + ep2), maxe_);
292 e2a = e2, ep2a = ep2,
295 Q0 = Qf(e2 < 0 ? -e2 : ep2, e2 < 0),
296 h = e2 - f1 * f2 * K /
Q0 - 3 * J2,
297 dh = 1 - 3 * f1 * K * QH3f(e2 < 0 ? -e2 : ep2, e2 < 0) /
299 e2 =
min(e2a -
h / dh, maxe_);
300 ep2 =
max(e2 / (1 - e2), -maxe_);
301 if (
abs(
h) < eps2_ || e2 == e2a || ep2 == ep2a)
304 return e2 / (1 +
sqrt(1 - e2));
315 return (e2 - K *
f1 *
f2 / Qf(f < 0 ? -e2 : e2 /
f2, f < 0)) / 3;
Matrix< RealScalar, Dynamic, Dynamic > M
const Vector3 V0(0, 0, 0)
The normal gravity of the earth.
static bool isfinite(T x)
static Cal3_S2 K(500, 500, 0.1, 640/2, 480/2)
static real atan5series(real x)
double f2(const Vector2 &x)
EIGEN_DEVICE_FUNC const LogReturnType log() const
static real atan7series(real x)
static real QH3f(real x, bool alt)
int EIGEN_BLAS_FUNC() swap(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Array< int, Dynamic, 1 > v
static Math::real FlatteningToJ2(real a, real GM, real omega, real f)
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Namespace for GeographicLib.
Vector::Scalar omega(const Vector &t, const Vector &s, RealScalar angle)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
EIGEN_DEVICE_FUNC const Scalar & q
static Math::real J2ToFlattening(real a, real GM, real omega, real J2)
static const NormalGravity & GRS80()
void Initialize(real a, real GM, real omega, real f_J2, bool geometricp)
Math::real SurfaceGravity(real lat) const
static T copysign(T x, T y)
Header for GeographicLib::NormalGravity class.
static const size_t dim2_
static real Qf(real x, bool alt)
Exception handling for GeographicLib.
The quaternion class used to represent 3D orientations and rotations.
Point2 f1(const Point3 &p, OptionalJacobian< 2, 3 > H)
static real Hf(real x, bool alt)
Math::real Gravity(real lat, real h, real &gammay, real &gammaz) const
static const NormalGravity & WGS84()
Jet< T, N > sqrt(const Jet< T, N > &f)
Math::real V0(real X, real Y, real Z, real &GammaX, real &GammaY, real &GammaZ) const
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Math::real Phi(real X, real Y, real &fX, real &fY) const
EIGEN_DEVICE_FUNC const CeilReturnType ceil() const
Math::real U(real X, real Y, real Z, real &gammaX, real &gammaY, real &gammaZ) const
#define GEOGRAPHICLIB_PANIC