TensorImagePatch.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
12 
13 namespace Eigen {
14 
29 namespace internal {
30 
31 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
32 struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
33 {
36  typedef typename XprTraits::StorageKind StorageKind;
37  typedef typename XprTraits::Index Index;
38  typedef typename XprType::Nested Nested;
40  static const int NumDimensions = XprTraits::NumDimensions + 1;
41  static const int Layout = XprTraits::Layout;
42  typedef typename XprTraits::PointerType PointerType;
43 };
44 
45 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
47 {
49 };
50 
51 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
52 struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
53 {
55 };
56 
57 template <typename Self, bool Vectorizable>
59  typedef typename Self::Index Index;
60  typedef typename Self::Scalar Scalar;
61  typedef typename Self::Impl Impl;
63  const Self& self, const Index num_coeff_to_copy, const Index dst_index,
64  Scalar* dst_data, const Index src_index) {
65  const Impl& impl = self.impl();
66  for (Index i = 0; i < num_coeff_to_copy; ++i) {
67  dst_data[dst_index + i] = impl.coeff(src_index + i);
68  }
69  }
70 };
71 
72 template <typename Self>
73 struct ImagePatchCopyOp<Self, true> {
74  typedef typename Self::Index Index;
75  typedef typename Self::Scalar Scalar;
76  typedef typename Self::Impl Impl;
79  const Self& self, const Index num_coeff_to_copy, const Index dst_index,
80  Scalar* dst_data, const Index src_index) {
81  const Impl& impl = self.impl();
82  const Index packet_size = internal::unpacket_traits<Packet>::size;
83  const Index vectorized_size =
84  (num_coeff_to_copy / packet_size) * packet_size;
85  for (Index i = 0; i < vectorized_size; i += packet_size) {
86  Packet p = impl.template packet<Unaligned>(src_index + i);
87  internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i, p);
88  }
89  for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
90  dst_data[dst_index + i] = impl.coeff(src_index + i);
91  }
92  }
93 };
94 
95 template <typename Self>
97  typedef typename Self::Index Index;
98  typedef typename Self::Scalar Scalar;
101  const Index num_coeff_to_pad, const Scalar padding_value,
102  const Index dst_index, Scalar* dst_data) {
103  const Index packet_size = internal::unpacket_traits<Packet>::size;
104  const Packet padded_packet = internal::pset1<Packet>(padding_value);
105  const Index vectorized_size =
106  (num_coeff_to_pad / packet_size) * packet_size;
107  for (Index i = 0; i < vectorized_size; i += packet_size) {
108  internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i,
109  padded_packet);
110  }
111  for (Index i = vectorized_size; i < num_coeff_to_pad; ++i) {
112  dst_data[dst_index + i] = padding_value;
113  }
114  }
115 };
116 
117 } // end namespace internal
118 
119 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
120 class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
121 {
122  public:
125  typedef typename XprType::CoeffReturnType CoeffReturnType;
129 
131  DenseIndex row_strides, DenseIndex col_strides,
132  DenseIndex in_row_strides, DenseIndex in_col_strides,
133  DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
134  PaddingType padding_type, Scalar padding_value)
135  : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
136  m_row_strides(row_strides), m_col_strides(col_strides),
137  m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
138  m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
139  m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
140  m_padding_type(padding_type), m_padding_value(padding_value) {}
141 
143  DenseIndex row_strides, DenseIndex col_strides,
144  DenseIndex in_row_strides, DenseIndex in_col_strides,
145  DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
146  DenseIndex padding_top, DenseIndex padding_bottom,
147  DenseIndex padding_left, DenseIndex padding_right,
148  Scalar padding_value)
149  : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
150  m_row_strides(row_strides), m_col_strides(col_strides),
151  m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
152  m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
153  m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
154  m_padding_left(padding_left), m_padding_right(padding_right),
155  m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
156 
157 
159  DenseIndex patch_rows() const { return m_patch_rows; }
161  DenseIndex patch_cols() const { return m_patch_cols; }
163  DenseIndex row_strides() const { return m_row_strides; }
165  DenseIndex col_strides() const { return m_col_strides; }
167  DenseIndex in_row_strides() const { return m_in_row_strides; }
169  DenseIndex in_col_strides() const { return m_in_col_strides; }
171  DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
173  DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
175  bool padding_explicit() const { return m_padding_explicit; }
177  DenseIndex padding_top() const { return m_padding_top; }
179  DenseIndex padding_bottom() const { return m_padding_bottom; }
181  DenseIndex padding_left() const { return m_padding_left; }
183  DenseIndex padding_right() const { return m_padding_right; }
185  PaddingType padding_type() const { return m_padding_type; }
187  Scalar padding_value() const { return m_padding_value; }
188 
191  expression() const { return m_xpr; }
192 
193  protected:
194  typename XprType::Nested m_xpr;
203  const bool m_padding_explicit;
209  const Scalar m_padding_value;
210 };
211 
212 // Eval as rvalue
213 template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
214 struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
215 {
217  typedef typename XprType::Index Index;
219  static const int NumDims = NumInputDims + 1;
223  Device> Self;
227  static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
230 
231  enum {
232  IsAligned = false,
234  BlockAccess = false,
235  PreferBlockAccess = true,
237  CoordAccess = false,
238  RawAccess = false
239  };
240 
241  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
243  //===--------------------------------------------------------------------===//
244 
245  EIGEN_STRONG_INLINE TensorEvaluator( const XprType& op, const Device& device)
246  : m_device(device), m_impl(op.expression(), device)
247  {
248  EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
249 
250  m_paddingValue = op.padding_value();
251 
252  const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
253 
254  // Caches a few variables.
255  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
256  m_inputDepth = input_dims[0];
257  m_inputRows = input_dims[1];
258  m_inputCols = input_dims[2];
259  } else {
260  m_inputDepth = input_dims[NumInputDims-1];
261  m_inputRows = input_dims[NumInputDims-2];
262  m_inputCols = input_dims[NumInputDims-3];
263  }
264 
265  m_row_strides = op.row_strides();
266  m_col_strides = op.col_strides();
267 
268  // Input strides and effective input/patch size
269  m_in_row_strides = op.in_row_strides();
270  m_in_col_strides = op.in_col_strides();
271  m_row_inflate_strides = op.row_inflate_strides();
272  m_col_inflate_strides = op.col_inflate_strides();
273  // The "effective" input rows and input cols are the input rows and cols
274  // after inflating them with zeros.
275  // For examples, a 2x3 matrix with row_inflate_strides and
276  // col_inflate_strides of 2 comes from:
277  // A B C
278  // D E F
279  //
280  // to a matrix is 3 x 5:
281  //
282  // A . B . C
283  // . . . . .
284  // D . E . F
285 
286  m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
287  m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
288  m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
289  m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
290 
291  if (op.padding_explicit()) {
292  m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
293  m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
294  m_rowPaddingTop = op.padding_top();
295  m_colPaddingLeft = op.padding_left();
296  } else {
297  // Computing padding from the type
298  switch (op.padding_type()) {
299  case PADDING_VALID:
300  m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
301  m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
302  // Calculate the padding
303  m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
304  m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
305  break;
306  case PADDING_SAME:
307  m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
308  m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
309  // Calculate the padding
310  m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
311  m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
312  // The padding size calculation for PADDING_SAME has been updated to
313  // be consistent with how TensorFlow extracts its paddings.
314  m_rowPaddingTop = numext::maxi<Index>(0, m_rowPaddingTop);
315  m_colPaddingLeft = numext::maxi<Index>(0, m_colPaddingLeft);
316  break;
317  default:
318  eigen_assert(false && "unexpected padding");
319  m_outputCols=0; // silence the uninitialised warning;
320  m_outputRows=0;
321  }
322  }
323  eigen_assert(m_outputRows > 0);
324  eigen_assert(m_outputCols > 0);
325 
326  // Dimensions for result of extraction.
327  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
328  // ColMajor
329  // 0: depth
330  // 1: patch_rows
331  // 2: patch_cols
332  // 3: number of patches
333  // 4 and beyond: anything else (such as batch).
334  m_dimensions[0] = input_dims[0];
335  m_dimensions[1] = op.patch_rows();
336  m_dimensions[2] = op.patch_cols();
337  m_dimensions[3] = m_outputRows * m_outputCols;
338  for (int i = 4; i < NumDims; ++i) {
339  m_dimensions[i] = input_dims[i-1];
340  }
341  } else {
342  // RowMajor
343  // NumDims-1: depth
344  // NumDims-2: patch_rows
345  // NumDims-3: patch_cols
346  // NumDims-4: number of patches
347  // NumDims-5 and beyond: anything else (such as batch).
348  m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
349  m_dimensions[NumDims-2] = op.patch_rows();
350  m_dimensions[NumDims-3] = op.patch_cols();
351  m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
352  for (int i = NumDims-5; i >= 0; --i) {
353  m_dimensions[i] = input_dims[i];
354  }
355  }
356 
357  // Strides for moving the patch in various dimensions.
358  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
359  m_colStride = m_dimensions[1];
360  m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
361  m_otherStride = m_patchStride * m_dimensions[3];
362  } else {
363  m_colStride = m_dimensions[NumDims-2];
364  m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
365  m_otherStride = m_patchStride * m_dimensions[NumDims-4];
366  }
367 
368  // Strides for navigating through the input tensor.
369  m_rowInputStride = m_inputDepth;
370  m_colInputStride = m_inputDepth * m_inputRows;
371  m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
372 
373  // Fast representations of different variables.
374  m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
375  m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
376  m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
377  m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
378  m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
379  m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
380 
381  // Number of patches in the width dimension.
382  m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
383  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
384  m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
385  } else {
386  m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
387  }
388  }
389 
390  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
391 
392  EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
393  m_impl.evalSubExprsIfNeeded(NULL);
394  return true;
395  }
396 
397 #ifdef EIGEN_USE_THREADS
398  template <typename EvalSubExprsCallback>
399  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
400  EvaluatorPointerType, EvalSubExprsCallback done) {
401  m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
402  }
403 #endif // EIGEN_USE_THREADS
404 
406  m_impl.cleanup();
407  }
408 
409  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
410  {
411  // Patch index corresponding to the passed in index.
412  const Index patchIndex = index / m_fastPatchStride;
413  // Find the offset of the element wrt the location of the first element.
414  const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
415 
416  // Other ways to index this element.
417  const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
418  const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
419 
420  // Calculate col index in the input original tensor.
421  const Index colIndex = patch2DIndex / m_fastOutputRows;
422  const Index colOffset = patchOffset / m_fastColStride;
423  const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
424  const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
425  if (inputCol < 0 || inputCol >= m_input_cols_eff ||
426  ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
427  return Scalar(m_paddingValue);
428  }
429 
430  // Calculate row index in the original input tensor.
431  const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
432  const Index rowOffset = patchOffset - colOffset * m_colStride;
433  const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
434  const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
435  if (inputRow < 0 || inputRow >= m_input_rows_eff ||
436  ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
437  return Scalar(m_paddingValue);
438  }
439 
440  const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
441  const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
442 
443  const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
444  return m_impl.coeff(inputIndex);
445  }
446 
447  template<int LoadMode>
448  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
449  {
450  EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
451  eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
452 
453  if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
454  return packetWithPossibleZero(index);
455  }
456 
457  const Index indices[2] = {index, index + PacketSize - 1};
458  const Index patchIndex = indices[0] / m_fastPatchStride;
459  if (patchIndex != indices[1] / m_fastPatchStride) {
460  return packetWithPossibleZero(index);
461  }
462  const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
463  eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
464 
465  // Find the offset of the element wrt the location of the first element.
466  const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
467  (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
468 
469  const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
470  eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
471 
472  const Index colIndex = patch2DIndex / m_fastOutputRows;
473  const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
474 
475  // Calculate col indices in the original input tensor.
476  const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
477  m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
478  if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
479  return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
480  }
481 
482  if (inputCols[0] == inputCols[1]) {
483  const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
484  const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
485  eigen_assert(rowOffsets[0] <= rowOffsets[1]);
486  // Calculate col indices in the original input tensor.
487  const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
488  m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
489 
490  if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
491  return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
492  }
493 
494  if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
495  // no padding
496  const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
497  const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
498  const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
499  return m_impl.template packet<Unaligned>(inputIndex);
500  }
501  }
502 
503  return packetWithPossibleZero(index);
504  }
505 
506  EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
507 
509 
510 #ifdef EIGEN_USE_SYCL
511  // binding placeholder accessors to a command group handler for SYCL
512  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
513  m_impl.bind(cgh);
514  }
515 #endif
516 
517  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; }
518  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; }
519  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; }
520  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; }
521  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const { return m_row_strides; }
522  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const { return m_col_strides; }
523  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; }
524  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; }
525  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; }
526  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; }
527 
529  costPerCoeff(bool vectorized) const {
530  // We conservatively estimate the cost for the code path where the computed
531  // index is inside the original image and
532  // TensorEvaluator<ArgType, Device>::CoordAccess is false.
533  const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
534  6 * TensorOpCost::MulCost<Index>() +
535  8 * TensorOpCost::MulCost<Index>();
536  return m_impl.costPerCoeff(vectorized) +
537  TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
538  }
539 
540  protected:
542  {
545  for (int i = 0; i < PacketSize; ++i) {
546  values[i] = coeff(index+i);
547  }
548  PacketReturnType rslt = internal::pload<PacketReturnType>(values);
549  return rslt;
550  }
551 
552  Dimensions m_dimensions;
553 
556  Index m_colStride;
559 
564 
569 
576 
580 
582  Index m_inputRows;
583  Index m_inputCols;
584 
587 
590 
593 
595 
598 };
599 
600 
601 } // end namespace Eigen
602 
603 #endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType &expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value)
const DenseIndex m_in_col_strides
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::internal::nested< TensorImagePatchOp >::type Nested
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType &expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value)
internal::remove_const< typename XprType::Scalar >::type Scalar
#define EIGEN_STRONG_INLINE
Definition: Macros.h:917
const DenseIndex m_padding_left
Eigen::internal::traits< TensorImagePatchOp >::StorageKind StorageKind
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Self &self, const Index num_coeff_to_copy, const Index dst_index, Scalar *dst_data, const Index src_index)
const PaddingType m_padding_type
EIGEN_DEVICE_FUNC const internal::remove_all< typename XprType::Nested >::type & expression() const
EIGEN_DEVICE_FUNC DenseIndex padding_top() const
TensorEvaluator< const TensorImagePatchOp< Rows, Cols, ArgType >, Device > Self
EIGEN_DEVICE_FUNC DenseIndex col_strides() const
static double depth
const DenseIndex m_row_strides
const DenseIndex m_col_strides
leaf::MyValues values
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Eigen::internal::traits< TensorImagePatchOp >::Index Index
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
A cost model used to limit the number of threads used for evaluating tensor expression.
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
const DenseIndex m_padding_top
#define EIGEN_ALIGN_MAX
EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const
EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const
const DenseIndex m_patch_cols
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
EIGEN_DEVICE_FUNC Scalar padding_value() const
EIGEN_DEVICE_FUNC DenseIndex patch_rows() const
EIGEN_DEVICE_FUNC T() ceil(const T &x)
const DenseIndex m_padding_bottom
Eigen::internal::traits< TensorImagePatchOp >::Scalar Scalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition: CwiseBinaryOp.h:77
EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
#define eigen_assert(x)
Definition: Macros.h:1037
EIGEN_DEVICE_FUNC DenseIndex padding_left() const
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
EIGEN_DEVICE_FUNC DenseIndex padding_right() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
#define NULL
Definition: ccolamd.c:609
Eigen::NumTraits< Scalar >::Real RealScalar
static const int Cols
EIGEN_DEVICE_FUNC DenseIndex row_strides() const
EIGEN_DEVICE_FUNC DenseIndex patch_cols() const
The tensor base class.
Definition: TensorBase.h:973
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition: Meta.h:66
const DenseIndex m_patch_rows
EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Self &self, const Index num_coeff_to_copy, const Index dst_index, Scalar *dst_data, const Index src_index)
internal::remove_const< typename XprType::Scalar >::type Scalar
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
float * p
EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
EIGEN_DEVICE_FUNC PaddingType padding_type() const
#define EIGEN_DEVICE_REF
Definition: TensorMacros.h:50
packet_traits< Scalar >::type Packet
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:55
EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const
const DenseIndex m_in_row_strides
const std::vector< size_t > dimensions
const DenseIndex m_col_inflate_strides
const DenseIndex m_padding_right
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator< ArgType, Device > & impl() const
EIGEN_DEVICE_FUNC bool padding_explicit() const
XprType::CoeffReturnType CoeffReturnType
const DenseIndex m_row_inflate_strides
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
#define EIGEN_UNROLL_LOOP
Definition: Macros.h:1461
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Index num_coeff_to_pad, const Scalar padding_value, const Index dst_index, Scalar *dst_data)


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:37:02