20 #ifndef EIGEN_MEMORY_H 21 #define EIGEN_MEMORY_H 23 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED 34 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ 35 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) 36 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 38 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 45 #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) 46 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 48 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 51 #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ 52 || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ 53 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ 54 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 55 #define EIGEN_MALLOC_ALREADY_ALIGNED 1 57 #define EIGEN_MALLOC_ALREADY_ALIGNED 0 69 #ifdef EIGEN_EXCEPTIONS 70 throw std::bad_alloc();
73 #if defined(EIGEN_HIPCC) 85 void* unused = ::operator
new(huge);
102 eigen_assert(alignment >=
sizeof(
void*) && (alignment & (alignment-1)) == 0 &&
"Alignment must be at least sizeof(void*) and a power of 2");
105 void *original = malloc(size+alignment);
107 if (original == 0)
return 0;
108 void *aligned =
reinterpret_cast<void*
>((
reinterpret_cast<std::size_t>(original) & ~(
std::size_t(alignment-1))) + alignment);
109 *(
reinterpret_cast<void**
>(aligned) - 1) = original;
118 free(*(reinterpret_cast<void**>(ptr) - 1));
130 void *original = *(
reinterpret_cast<void**
>(ptr) - 1);
131 std::ptrdiff_t previous_offset =
static_cast<char *
>(ptr)-static_cast<char *>(original);
133 if (original == 0)
return 0;
135 void *previous_aligned =
static_cast<char *
>(original)+previous_offset;
136 if(aligned!=previous_aligned)
137 std::memmove(aligned, previous_aligned, size);
139 *(
reinterpret_cast<void**
>(aligned) - 1) = original;
147 #ifdef EIGEN_NO_MALLOC 150 eigen_assert(
false &&
"heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
152 #elif defined EIGEN_RUNTIME_NO_MALLOC 155 static bool value =
true;
160 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() {
return is_malloc_allowed_impl(
false); }
161 EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(
bool new_value) {
return is_malloc_allowed_impl(
true, new_value); }
164 eigen_assert(is_malloc_allowed() &&
"heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
179 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED 182 result = malloc(size);
184 #if EIGEN_DEFAULT_ALIGN_BYTES==16 185 eigen_assert((size<16 || (
std::size_t(result)%16)==0) &&
"System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade aligned memory allocator.");
200 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED 220 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED 221 result = std::realloc(ptr,new_size);
226 if (!result && new_size)
275 return std::realloc(ptr, new_size);
289 while(size) ptr[--
size].~T();
300 for (i = 0; i <
size; ++
i) ::
new (ptr + i)
T;
328 check_size_for_overflow<T>(
size);
344 check_size_for_overflow<T>(
size);
345 T *
result =
reinterpret_cast<T*
>(conditional_aligned_malloc<Align>(
sizeof(
T)*size));
352 conditional_aligned_free<Align>(
result);
363 destruct_elements_of_array<T>(ptr,
size);
372 destruct_elements_of_array<T>(ptr,
size);
373 conditional_aligned_free<Align>(ptr);
378 check_size_for_overflow<T>(new_size);
379 check_size_for_overflow<T>(old_size);
380 if(new_size < old_size)
382 T *
result =
reinterpret_cast<T*
>(conditional_aligned_realloc<Align>(
reinterpret_cast<void*
>(pts),
sizeof(
T)*new_size,
sizeof(
T)*old_size));
383 if(new_size > old_size)
391 conditional_aligned_free<Align>(
result);
403 check_size_for_overflow<T>(
size);
404 T *
result =
reinterpret_cast<T*
>(conditional_aligned_malloc<Align>(
sizeof(
T)*size));
413 conditional_aligned_free<Align>(
result);
422 check_size_for_overflow<T>(new_size);
423 check_size_for_overflow<T>(old_size);
426 T *
result =
reinterpret_cast<T*
>(conditional_aligned_realloc<Align>(
reinterpret_cast<void*
>(pts),
sizeof(
T)*new_size,
sizeof(
T)*old_size));
435 conditional_aligned_free<Align>(
result);
445 destruct_elements_of_array<T>(ptr,
size);
446 conditional_aligned_free<Align>(ptr);
468 template<
int Alignment,
typename Scalar,
typename Index>
472 const Index AlignmentSize = Alignment / ScalarSize;
473 const Index AlignmentMask = AlignmentSize-1;
481 else if( (
UIntPtr(array) & (
sizeof(
Scalar)-1)) || (Alignment%ScalarSize)!=0)
496 template<
typename Scalar,
typename Index>
500 return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(
array,
size);
505 template<
typename Index>
508 return ((size+base-1)/base)*base;
527 memcpy(target, start, size);
533 { std::copy(start, end, target); }
545 static inline void run(
const T* start,
const T*
end,
T* target)
550 std::memmove(target, start, size);
555 static inline void run(
const T* start,
const T*
end,
T* target)
559 std::copy(start, end, target);
563 std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) /
sizeof(
T);
564 std::copy_backward(start, end, target + count);
569 #if EIGEN_HAS_RVALUE_REFERENCES 572 return std::move(start, end, target);
577 return std::copy(start, end, target);
587 #if ! defined EIGEN_ALLOCA && ! defined EIGEN_GPU_COMPILE_PHASE 588 #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) 589 #define EIGEN_ALLOCA alloca 590 #elif EIGEN_COMP_MSVC 591 #define EIGEN_ALLOCA _alloca 600 #if defined(__clang__) && defined(__thumb__) 617 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
626 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
638 template<
typename Xpr,
int NbEvaluations,
641 struct local_nested_eval_wrapper
643 static const bool NeedExternalBuffer =
false;
649 local_nested_eval_wrapper(
const Xpr& xpr, Scalar* ptr) : object(xpr)
656 template<
typename Xpr,
int NbEvaluations>
657 struct local_nested_eval_wrapper<Xpr,NbEvaluations,true>
659 static const bool NeedExternalBuffer =
true;
666 local_nested_eval_wrapper(
const Xpr& xpr, Scalar* ptr)
676 ~local_nested_eval_wrapper()
688 #endif // EIGEN_ALLOCA 705 const T*
ptr()
const {
return m_ptr; }
706 operator const T*()
const {
return m_ptr; }
743 #if EIGEN_DEFAULT_ALIGN_BYTES>0 746 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) 748 #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) 751 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ 752 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ 753 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ 754 : reinterpret_cast<TYPE*>( \ 755 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ 756 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ 757 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) 760 #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) \ 761 Eigen::internal::local_nested_eval_wrapper<XPR_T,N> EIGEN_CAT(NAME,_wrapper)(XPR, reinterpret_cast<typename XPR_T::Scalar*>( \ 762 ( (Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::NeedExternalBuffer) && ((sizeof(typename XPR_T::Scalar)*XPR.size())<=EIGEN_STACK_ALLOCATION_LIMIT) ) \ 763 ? EIGEN_ALIGNED_ALLOCA( sizeof(typename XPR_T::Scalar)*XPR.size() ) : 0 ) ) ; \ 764 typename Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::ObjectType NAME(EIGEN_CAT(NAME,_wrapper).object) 768 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ 769 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ 770 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ 771 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) 774 #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) typename Eigen::internal::nested_eval<XPR_T,N>::type NAME(XPR) 783 #if EIGEN_HAS_CXX17_OVERALIGN 787 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) 788 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) 789 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW 790 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) 795 #if EIGEN_MAX_ALIGN_BYTES!=0 && !defined(EIGEN_HIP_DEVICE_COMPILE) 796 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 798 void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ 799 EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ 800 EIGEN_CATCH (...) { return 0; } \ 802 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ 804 void *operator new(std::size_t size) { \ 805 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 808 void *operator new[](std::size_t size) { \ 809 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 812 void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 814 void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 816 void operator delete(void * ptr, std::size_t ) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 818 void operator delete[](void * ptr, std::size_t ) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 823 static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ 825 static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ 827 void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ 829 void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ 831 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 833 void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ 834 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ 836 typedef void eigen_aligned_operator_new_marker_type; 838 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) 841 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) 842 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ 843 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool( \ 844 ((Size)!=Eigen::Dynamic) && \ 845 (((EIGEN_MAX_ALIGN_BYTES>=16) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES )==0)) || \ 846 ((EIGEN_MAX_ALIGN_BYTES>=32) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/2)==0)) || \ 847 ((EIGEN_MAX_ALIGN_BYTES>=64) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/4)==0)) ))) 904 #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0) 908 size_type max_size()
const {
915 internal::check_size_for_overflow<T>(num);
927 #if !defined(EIGEN_NO_CPUID) 928 # if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 929 # if defined(__PIC__) && EIGEN_ARCH_i386 931 # define EIGEN_CPUID(abcd,func,id) \ 932 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); 933 # elif defined(__PIC__) && EIGEN_ARCH_x86_64 936 # define EIGEN_CPUID(abcd,func,id) \ 937 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); 940 # define EIGEN_CPUID(abcd,func,id) \ 941 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); 943 # elif EIGEN_COMP_MSVC 944 # if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64 945 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) 954 inline bool cpuid_is_vendor(
int abcd[4],
const int vendor[3])
956 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
959 inline void queryCacheSizes_intel_direct(
int&
l1,
int&
l2,
int&
l3)
966 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
967 EIGEN_CPUID(abcd,0
x4,cache_id);
968 cache_type = (abcd[0] & 0x0F) >> 0;
969 if(cache_type==1||cache_type==3)
971 int cache_level = (abcd[0] & 0xE0) >> 5;
972 int ways = (abcd[1] & 0xFFC00000) >> 22;
973 int partitions = (abcd[1] & 0x003FF000) >> 12;
974 int line_size = (abcd[1] & 0x00000FFF) >> 0;
975 int sets = (abcd[2]);
977 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
981 case 1: l1 = cache_size;
break;
982 case 2: l2 = cache_size;
break;
983 case 3: l3 = cache_size;
break;
988 }
while(cache_type>0 && cache_id<16);
991 inline void queryCacheSizes_intel_codes(
int& l1,
int& l2,
int& l3)
994 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
996 EIGEN_CPUID(abcd,0x00000002,0);
997 unsigned char *
bytes =
reinterpret_cast<unsigned char *
>(abcd)+2;
998 bool check_for_p2_core2 =
false;
999 for(
int i=0;
i<14; ++
i)
1003 case 0x0A: l1 = 8;
break;
1004 case 0x0C: l1 = 16;
break;
1005 case 0x0E: l1 = 24;
break;
1006 case 0x10: l1 = 16;
break;
1007 case 0x15: l1 = 16;
break;
1008 case 0x2C: l1 = 32;
break;
1009 case 0x30: l1 = 32;
break;
1010 case 0x60: l1 = 16;
break;
1011 case 0x66: l1 = 8;
break;
1012 case 0x67: l1 = 16;
break;
1013 case 0x68: l1 = 32;
break;
1014 case 0x1A: l2 = 96;
break;
1015 case 0x22: l3 = 512;
break;
1016 case 0x23: l3 = 1024;
break;
1017 case 0x25: l3 = 2048;
break;
1018 case 0x29: l3 = 4096;
break;
1019 case 0x39: l2 = 128;
break;
1020 case 0x3A: l2 = 192;
break;
1021 case 0x3B: l2 = 128;
break;
1022 case 0x3C: l2 = 256;
break;
1023 case 0x3D: l2 = 384;
break;
1024 case 0x3E: l2 = 512;
break;
1025 case 0x40: l2 = 0;
break;
1026 case 0x41: l2 = 128;
break;
1027 case 0x42: l2 = 256;
break;
1028 case 0x43: l2 = 512;
break;
1029 case 0x44: l2 = 1024;
break;
1030 case 0x45: l2 = 2048;
break;
1031 case 0x46: l3 = 4096;
break;
1032 case 0x47: l3 = 8192;
break;
1033 case 0x48: l2 = 3072;
break;
1034 case 0x49:
if(l2!=0) l3 = 4096;
else {check_for_p2_core2=
true; l3 = l2 = 4096;}
break;
1035 case 0x4A: l3 = 6144;
break;
1036 case 0x4B: l3 = 8192;
break;
1037 case 0x4C: l3 = 12288;
break;
1038 case 0x4D: l3 = 16384;
break;
1039 case 0x4E: l2 = 6144;
break;
1040 case 0x78: l2 = 1024;
break;
1041 case 0x79: l2 = 128;
break;
1042 case 0x7A: l2 = 256;
break;
1043 case 0x7B: l2 = 512;
break;
1044 case 0x7C: l2 = 1024;
break;
1045 case 0x7D: l2 = 2048;
break;
1046 case 0x7E: l2 = 256;
break;
1047 case 0x7F: l2 = 512;
break;
1048 case 0x80: l2 = 512;
break;
1049 case 0x81: l2 = 128;
break;
1050 case 0x82: l2 = 256;
break;
1051 case 0x83: l2 = 512;
break;
1052 case 0x84: l2 = 1024;
break;
1053 case 0x85: l2 = 2048;
break;
1054 case 0x86: l2 = 512;
break;
1055 case 0x87: l2 = 1024;
break;
1056 case 0x88: l3 = 2048;
break;
1057 case 0x89: l3 = 4096;
break;
1058 case 0x8A: l3 = 8192;
break;
1059 case 0x8D: l3 = 3072;
break;
1064 if(check_for_p2_core2 && l2 == l3)
1071 inline void queryCacheSizes_intel(
int& l1,
int& l2,
int& l3,
int max_std_funcs)
1073 if(max_std_funcs>=4)
1074 queryCacheSizes_intel_direct(l1,l2,l3);
1075 else if(max_std_funcs>=2)
1076 queryCacheSizes_intel_codes(l1,l2,l3);
1081 inline void queryCacheSizes_amd(
int& l1,
int& l2,
int& l3)
1084 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1087 EIGEN_CPUID(abcd,0x80000000,0);
1088 if(static_cast<numext::uint32_t>(abcd[0]) >= static_cast<numext::uint32_t>(0x80000006))
1090 EIGEN_CPUID(abcd,0x80000005,0);
1091 l1 = (abcd[2] >> 24) * 1024;
1092 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1093 EIGEN_CPUID(abcd,0x80000006,0);
1094 l2 = (abcd[2] >> 16) * 1024;
1095 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024;
1110 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
1111 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
1112 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574};
1115 EIGEN_CPUID(abcd,0
x0,0);
1116 int max_std_funcs = abcd[0];
1117 if(cpuid_is_vendor(abcd,GenuineIntel))
1118 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
1119 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
1120 queryCacheSizes_amd(l1,l2,l3);
1123 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
1163 #endif // EIGEN_MEMORY_H
EIGEN_DEVICE_FUNC T * conditional_aligned_new_auto(std::size_t size)
const T & operator[](std::ptrdiff_t i) const
#define EIGEN_ALWAYS_INLINE
static void run(const T *start, const T *end, T *target)
EIGEN_DEVICE_FUNC void * aligned_malloc(std::size_t size)
void * handmade_aligned_realloc(void *ptr, std::size_t size, std::size_t=0)
EIGEN_DEVICE_FUNC void conditional_aligned_free(void *ptr)
static Index first_aligned(const DenseBase< Derived > &m)
scoped_array(std::ptrdiff_t size)
T & operator[](std::ptrdiff_t i)
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
A matrix or vector expression mapping an existing array of data.
EIGEN_DEVICE_FUNC void aligned_delete(T *ptr, std::size_t size)
static EIGEN_DEVICE_FUNC void run(const T *start, const T *end, T *target)
EIGEN_DEVICE_FUNC T * smart_move(T *start, T *end, T *target)
Namespace containing all symbols from the Eigen library.
EIGEN_DEVICE_FUNC void conditional_aligned_free< false >(void *ptr)
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
static void run(const T *start, const T *end, T *target)
EIGEN_CONSTEXPR Index first(const T &x) EIGEN_NOEXCEPT
EIGEN_DEVICE_FUNC ~aligned_stack_memory_handler()
aligned_allocator< U > other
static Index first_default_aligned(const DenseBase< Derived > &m)
Index first_multiple(Index size, Index base)
EIGEN_DEVICE_FUNC aligned_stack_memory_handler(T *ptr, std::size_t size, bool dealloc)
const T & const_reference
EIGEN_DEVICE_FUNC void smart_copy(const T *start, const T *end, T *target)
EIGEN_DEVICE_FUNC void aligned_free(void *ptr)
EIGEN_DEVICE_FUNC void handmade_aligned_free(void *ptr)
EIGEN_DEVICE_FUNC T * conditional_aligned_realloc_new(T *pts, std::size_t new_size, std::size_t old_size)
STL compatible allocator to use with types requiring a non standrad alignment.
EIGEN_DEVICE_FUNC void * handmade_aligned_malloc(std::size_t size, std::size_t alignment=EIGEN_DEFAULT_ALIGN_BYTES)
void queryCacheSizes(int &l1, int &l2, int &l3)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Eigen::Triplet< double > T
EIGEN_DEVICE_FUNC void conditional_aligned_delete(T *ptr, std::size_t size)
EIGEN_DEVICE_FUNC void destruct_elements_of_array(T *ptr, std::size_t size)
EIGEN_DEVICE_FUNC T * conditional_aligned_new(std::size_t size)
pointer allocate(size_type num, const void *=0)
static EIGEN_DEVICE_FUNC void run(const T *start, const T *end, T *target)
aligned_allocator(const aligned_allocator &other)
EIGEN_DEVICE_FUNC T * aligned_new(std::size_t size)
void * conditional_aligned_realloc< false >(void *ptr, std::size_t new_size, std::size_t)
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)
EIGEN_DEVICE_FUNC void conditional_aligned_delete_auto(T *ptr, std::size_t size)
EIGEN_DEVICE_FUNC void check_that_malloc_is_allowed()
EIGEN_CONSTEXPR Index size(const T &x)
#define EIGEN_DEVICE_FUNC
EIGEN_DEVICE_FUNC void * conditional_aligned_malloc(std::size_t size)
void deallocate(pointer p, size_type)
std::ptrdiff_t difference_type
aligned_allocator(const aligned_allocator< U > &other)
#define EIGEN_USING_STD(FUNC)
static EIGEN_DEPRECATED const end_t end
EIGEN_DEVICE_FUNC T * construct_elements_of_array(T *ptr, std::size_t size)
void * aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
T * conditional_aligned_realloc_new_auto(T *pts, std::size_t new_size, std::size_t old_size)
EIGEN_DEVICE_FUNC void * conditional_aligned_malloc< false >(std::size_t size)
Annotation indicating that a class derives from another given type.
void * conditional_aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
EIGEN_DEVICE_FUNC void throw_std_bad_alloc()
#define eigen_internal_assert(x)
Generic expression where a coefficient-wise unary operator is applied to an expression.
void smart_memmove(const T *start, const T *end, T *target)
int queryTopLevelCacheSize()
#define EIGEN_UNUSED_VARIABLE(var)
void swap(scoped_array< T > &a, scoped_array< T > &b)