11 #ifndef EIGEN_MATRIX_LOGARITHM 12 #define EIGEN_MATRIX_LOGARITHM 18 template <
typename Scalar>
24 template <
typename Scalar>
28 static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5:
29 std::numeric_limits<RealScalar>::digits<= 53? 7:
30 std::numeric_limits<RealScalar>::digits<= 64? 8:
31 std::numeric_limits<RealScalar>::digits<=106? 10:
36 template <
typename MatrixType>
46 Scalar logA00 =
log(A(0,0));
47 Scalar logA11 =
log(A(1,1));
53 Scalar
y = A(1,1) - A(0,0);
56 result(0,1) = A(0,1) / A(0,0);
60 result(0,1) = A(0,1) * (logA11 - logA00) / y;
73 const float maxNormForPade[] = { 2.5111573934555054e-1 , 4.0535837411880493e-1,
74 5.3149729967117310e-1 };
77 int degree = minPadeDegree;
78 for (; degree <= maxPadeDegree; ++
degree)
79 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
87 const double maxNormForPade[] = { 1.6206284795015624e-2 , 5.3873532631381171e-2,
88 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
91 int degree = minPadeDegree;
92 for (; degree <= maxPadeDegree; ++
degree)
93 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
101 #if LDBL_MANT_DIG == 53 // double precision 102 const long double maxNormForPade[] = { 1.6206284795015624e-2
L , 5.3873532631381171e-2
L,
103 1.1352802267628681e-1
L, 1.8662860613541288e-1
L, 2.642960831111435e-1
L };
104 #elif LDBL_MANT_DIG <= 64 // extended precision 105 const long double maxNormForPade[] = { 5.48256690357782863103e-3
L , 2.34559162387971167321e-2
L,
106 5.84603923897347449857e-2
L, 1.08486423756725170223e-1
L, 1.68385767881294446649e-1
L,
107 2.32777776523703892094e-1
L };
108 #elif LDBL_MANT_DIG <= 106 // double-double 109 const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5
L ,
110 9.34074328446359654039446552677759e-4
L, 4.26117194647672175773064114582860e-3
L,
111 1.21546224740281848743149666560464e-2
L, 2.61100544998339436713088248557444e-2
L,
112 4.66170074627052749243018566390567e-2
L, 7.32585144444135027565872014932387e-2
L,
113 1.05026503471351080481093652651105e-1
L };
114 #else // quadruple precision 115 const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5
L ,
116 5.8853168473544560470387769480192666e-4
L, 2.9216120366601315391789493628113520e-3
L,
117 8.8415758124319434347116734705174308e-3
L, 1.9850836029449446668518049562565291e-2
L,
118 3.6688019729653446926585242192447447e-2
L, 5.9290962294020186998954055264528393e-2
L,
119 8.6998436081634343903250580992127677e-2
L, 1.1880960220216759245467951592883642e-1
L };
123 int degree = minPadeDegree;
124 for (; degree <= maxPadeDegree; ++
degree)
125 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
131 template <
typename MatrixType>
135 const int minPadeDegree = 3;
136 const int maxPadeDegree = 11;
137 assert(degree >= minPadeDegree && degree <= maxPadeDegree);
140 const RealScalar
nodes[][maxPadeDegree] = {
141 { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
142 0.8872983346207416885179265399782400L },
143 { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
144 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
145 { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
146 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
147 0.9530899229693319963988134391496965L },
148 { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
149 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
150 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
151 { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
152 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
153 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
154 0.9745539561713792622630948420239256L },
155 { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
156 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
157 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
158 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
159 { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
160 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
161 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
162 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
163 0.9840801197538130449177881014518364L },
164 { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
165 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
166 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
167 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
168 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
169 { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
170 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
171 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
172 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
173 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
174 0.9891143290730284964019690005614287L } };
176 const RealScalar weights[][maxPadeDegree] = {
177 { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
178 0.2777777777777777777777777777777778L },
179 { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
180 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
181 { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
182 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
183 0.1184634425280945437571320203599587L },
184 { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
185 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
186 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
187 { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
188 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
189 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
190 0.0647424830844348466353057163395410L },
191 { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
192 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
193 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
194 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
195 { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
196 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
197 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
198 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
199 0.0406371941807872059859460790552618L },
200 { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
201 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
202 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
203 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
204 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
205 { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
206 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
207 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
208 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
209 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
210 0.0278342835580868332413768602212743L } };
212 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
213 result.setZero(T.rows(), T.rows());
214 for (
int k = 0; k <
degree; ++k) {
215 RealScalar weight = weights[degree-minPadeDegree][k];
216 RealScalar node = nodes[degree-minPadeDegree][k];
217 result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
218 .template triangularView<Upper>().solve(TminusI);
224 template <
typename MatrixType>
231 int numberOfSquareRoots = 0;
232 int numberOfExtraSquareRoots = 0;
238 maxPadeDegree<= 5? 5.3149729967117310
e-1
L:
239 maxPadeDegree<= 7? 2.6429608311114350
e-1
L:
240 maxPadeDegree<= 8? 2.32777776523703892094
e-1
L:
241 maxPadeDegree<=10? 1.05026503471351080481093652651105
e-1
L:
242 1.1880960220216759245467951592883642
e-1
L);
245 RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
246 if (normTminusI < maxNormForPade) {
249 if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
251 ++numberOfExtraSquareRoots;
254 T = sqrtT.template triangularView<Upper>();
255 ++numberOfSquareRoots;
270 template <
typename MatrixType>
281 template <
typename MatrixType>
288 else if (A.rows() == 2)
331 template <
typename ResultType>
345 Index
rows()
const {
return m_A.rows(); }
346 Index
cols()
const {
return m_A.cols(); }
353 template<
typename Derived>
364 template <
typename Derived>
373 #endif // EIGEN_MATRIX_LOGARITHM EIGEN_DEVICE_FUNC const Log1pReturnType log1p() const
int matrix_log_get_pade_degree(float normTminusI)
Derived::PlainObject ReturnType
void evalTo(ResultType &result) const
Compute the matrix logarithm.
MatrixLogarithmReturnValue(const Derived &A)
Constructor.
Namespace containing all symbols from the Eigen library.
Helper class for computing matrix logarithm of atomic matrices.
DerType::Scalar imag(const AutoDiffScalar< DerType > &)
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
internal::ref_selector< Derived >::type DerivedNested
void matrix_log_compute_pade(MatrixType &result, const MatrixType &T, int degree)
EIGEN_DEVICE_FUNC const LogReturnType log() const
void matrix_log_compute_big(const MatrixType &A, MatrixType &result)
Compute logarithm of triangular matrices with size > 2.
NumTraits< Scalar >::Real RealScalar
void matrix_log_compute_2x2(const MatrixType &A, MatrixType &result)
Compute logarithm of 2x2 triangular matrix.
MatrixType compute(const MatrixType &A)
Compute matrix logarithm of atomic matrix.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Array< double, 1, 3 > e(1./3., 0.5, 2.)
NumTraits< Scalar >::Real RealScalar
mp::number< mp::cpp_dec_float< 100 >, mp::et_on > Real
static void run(const MatrixType &A, AtomicType &atomic, ResultType &result)
Compute the matrix function.
EIGEN_DEVICE_FUNC const ImagReturnType imag() const
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of triangular matrix.
Jet< T, N > pow(const Jet< T, N > &f, double g)
Generic expression where a coefficient-wise unary operator is applied to an expression.
EIGEN_DONT_INLINE void compute(Solver &solver, const MatrixType &A)
The matrix class, also used for vectors and row-vectors.
EIGEN_DEVICE_FUNC const CeilReturnType ceil() const
Proxy for the matrix logarithm of some matrix (expression).