Eigen/src/Core/arch/MSA/MathFunctions.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007 Julien Pommier
5 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
6 // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
7 //
8 // Copyright (C) 2018 Wave Computing, Inc.
9 // Written by:
10 // Chris Larsen
11 // Alexey Frunze (afrunze@wavecomp.com)
12 //
13 // This Source Code Form is subject to the terms of the Mozilla
14 // Public License v. 2.0. If a copy of the MPL was not distributed
15 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
16 
17 /* The sin, cos, exp, and log functions of this file come from
18  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
19  */
20 
21 /* The tanh function of this file is an adaptation of
22  * template<typename T> T generic_fast_tanh_float(const T&)
23  * from MathFunctionsImpl.h.
24  */
25 
26 #ifndef EIGEN_MATH_FUNCTIONS_MSA_H
27 #define EIGEN_MATH_FUNCTIONS_MSA_H
28 
29 namespace Eigen {
30 
31 namespace internal {
32 
33 template <>
35 plog<Packet4f>(const Packet4f& _x) {
36  static _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
37  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f);
38  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f);
39  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f);
40  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f);
41  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f);
42  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f);
43  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f);
44  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f);
45  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f);
46  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
47  static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
48  static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
49  static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
50 
51  // Convert negative argument into NAN (quiet negative, to be specific).
52  Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0);
53  Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero);
54  Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero);
55  Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask); // Add 0.0 or NAN.
56  Packet4f x = non_neg_x_or_nan;
57 
58  // Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0.
59  // N.B. the exponent is one less of what frexpf() would return.
60  Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x));
61  // Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf().
62  x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0));
63 
64  /*
65  if (x < SQRTHF) {
66  x = x + x - 1.0;
67  } else {
68  e += 1;
69  x = x - 1.0;
70  }
71  */
72  Packet4f xx = padd(x, x);
73  Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x);
74  e_int = psub(e_int, ge_mask);
75  x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x);
76  x = psub(x, p4f_1);
77  Packet4f e = __builtin_msa_ffint_s_w(e_int);
78 
79  Packet4f x2 = pmul(x, x);
80  Packet4f x3 = pmul(x2, x);
81 
82  Packet4f y, y1, y2;
83  y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
84  y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
85  y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
86  y = pmadd(y, x, p4f_cephes_log_p2);
87  y1 = pmadd(y1, x, p4f_cephes_log_p5);
88  y2 = pmadd(y2, x, p4f_cephes_log_p8);
89  y = pmadd(y, x3, y1);
90  y = pmadd(y, x3, y2);
91  y = pmul(y, x3);
92 
93  y = pmadd(e, p4f_cephes_log_q1, y);
94  x = __builtin_msa_fmsub_w(x, x2, p4f_half);
95  x = padd(x, y);
96  x = pmadd(e, p4f_cephes_log_q2, x);
97 
98  // x is now the logarithm result candidate. We still need to handle the
99  // extreme arguments of zero and positive infinity, though.
100  // N.B. if the argument is +INFINITY, x is NAN because the polynomial terms
101  // contain infinities of both signs (see the coefficients and code above).
102  // INFINITY - INFINITY is NAN.
103 
104  // If the argument is +INFINITY, make it the new result candidate.
105  // To achieve that we choose the smaller of the result candidate and the
106  // argument.
107  // This is correct for all finite pairs of values (the logarithm is smaller
108  // than the argument).
109  // This is also correct in the special case when the argument is +INFINITY
110  // and the result candidate is NAN. This is because the fmin.df instruction
111  // prefers non-NANs to NANs.
112  x = __builtin_msa_fmin_w(x, non_neg_x_or_nan);
113 
114  // If the argument is zero (including -0.0), the result becomes -INFINITY.
115  Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23);
116  x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs);
117 
118  return x;
119 }
120 
121 template <>
123 pexp<Packet4f>(const Packet4f& _x) {
124  // Limiting single-precision pexp's argument to [-128, +128] lets pexp
125  // reach 0 and INFINITY naturally.
126  static _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f);
127  static _EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f);
128  static _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
129  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
130  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
131  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f);
132  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f);
133  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f);
134  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f);
135  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f);
136  static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f);
137  static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
138  static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
139 
140  Packet4f x = _x;
141 
142  // Clamp x.
143  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x,
144  (v16u8)p4f_exp_lo);
145  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x,
146  (v16u8)p4f_exp_hi);
147 
148  // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
149  Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0);
150  Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add);
151  Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2);
152  Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int);
153 
154  x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1);
155  x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2);
156 
157  Packet4f z = pmul(x, x);
158 
159  Packet4f y = p4f_cephes_exp_p0;
160  y = pmadd(y, x, p4f_cephes_exp_p1);
161  y = pmadd(y, x, p4f_cephes_exp_p2);
162  y = pmadd(y, x, p4f_cephes_exp_p3);
163  y = pmadd(y, x, p4f_cephes_exp_p4);
164  y = pmadd(y, x, p4f_cephes_exp_p5);
165  y = pmadd(y, z, x);
166  y = padd(y, p4f_1);
167 
168  // y *= 2**exponent.
169  y = __builtin_msa_fexp2_w(y, x2_int);
170 
171  return y;
172 }
173 
174 template <>
176 ptanh<Packet4f>(const Packet4f& _x) {
177  static _EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f);
178  static _EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f);
179  // The monomial coefficients of the numerator polynomial (odd).
180  static _EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f);
181  static _EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f);
182  static _EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f);
183  static _EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f);
184  static _EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f);
185  static _EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f);
186  static _EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f);
187  // The monomial coefficients of the denominator polynomial (even).
188  static _EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f);
189  static _EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f);
190  static _EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f);
191  static _EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f);
192 
193  Packet4f x = pabs(_x);
194  Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny);
195 
196  // Clamp the inputs to the range [-9, 9] since anything outside
197  // this range is -/+1.0f in single-precision.
198  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x,
199  (v16u8)p4f_tanh_hi);
200 
201  // Since the polynomials are odd/even, we need x**2.
202  Packet4f x2 = pmul(x, x);
203 
204  // Evaluate the numerator polynomial p.
205  Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11);
206  p = pmadd(x2, p, p4f_alpha_9);
207  p = pmadd(x2, p, p4f_alpha_7);
208  p = pmadd(x2, p, p4f_alpha_5);
209  p = pmadd(x2, p, p4f_alpha_3);
210  p = pmadd(x2, p, p4f_alpha_1);
211  p = pmul(x, p);
212 
213  // Evaluate the denominator polynomial q.
214  Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4);
215  q = pmadd(x2, q, p4f_beta_2);
216  q = pmadd(x2, q, p4f_beta_0);
217 
218  // Divide the numerator by the denominator.
219  p = pdiv(p, q);
220 
221  // Reinstate the sign.
222  p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0);
223 
224  // When the argument is very small in magnitude it's more accurate to just return it.
225  p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x);
226 
227  return p;
228 }
229 
230 template <bool sine>
232  static _EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f); // Approx. (2**24) / (4/Pi).
233  static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f);
234  static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
235  static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
236  static _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f);
237  static _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f);
238  static _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f);
239  static _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f);
240  static _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f);
241  static _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f);
242  static _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4/Pi.
244  static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
245 
246  Packet4f x = pabs(_x);
247 
248  // Translate infinite arguments into NANs.
249  Packet4f zero_or_nan_if_inf = psub(_x, _x);
250  x = padd(x, zero_or_nan_if_inf);
251  // Prevent sin/cos from generating values larger than 1.0 in magnitude
252  // for very large arguments by setting x to 0.0.
253  Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg);
254  x = pand(x, (Packet4f)small_or_nan_mask);
255 
256  // Scale x by 4/Pi to find x's octant.
257  Packet4f y = pmul(x, p4f_cephes_FOPI);
258  // Get the octant. We'll reduce x by this number of octants or by one more than it.
259  Packet4i y_int = __builtin_msa_ftrunc_s_w(y);
260  // x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
261  // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
262  // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
263  Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1);
264  Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0); // bclri = bit-clear
265  y = __builtin_msa_ffint_s_w(y_int2);
266 
267  // Compute the sign to apply to the polynomial.
268  Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x)
269  : __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29);
270 
271  // Get the polynomial selection mask.
272  // We'll calculate both (sin and cos) polynomials and then select from the two.
273  Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0);
274 
275  // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
276  // The magic pass: "Extended precision modular arithmetic"
277  // x = ((x - y * DP1) - y * DP2) - y * DP3
278  Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1);
279  Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2);
280  Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3);
281  x = padd(x, tmp1);
282  x = padd(x, tmp2);
283  x = padd(x, tmp3);
284 
285  // Evaluate the cos(x) polynomial.
286  y = p4f_coscof_p0;
287  Packet4f z = pmul(x, x);
288  y = pmadd(y, z, p4f_coscof_p1);
289  y = pmadd(y, z, p4f_coscof_p2);
290  y = pmul(y, z);
291  y = pmul(y, z);
292  y = __builtin_msa_fmsub_w(y, z, p4f_half);
293  y = padd(y, p4f_1);
294 
295  // Evaluate the sin(x) polynomial.
296  Packet4f y2 = p4f_sincof_p0;
297  y2 = pmadd(y2, z, p4f_sincof_p1);
298  y2 = pmadd(y2, z, p4f_sincof_p2);
299  y2 = pmul(y2, z);
300  y2 = pmadd(y2, x, x);
301 
302  // Select the correct result from the two polynomials.
303  y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2)
304  : (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y);
305 
306  // Update the sign.
307  sign_mask = pxor(sign_mask, (Packet4i)y);
308  y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0); // binsli = bit-insert-left
309  return y;
310 }
311 
312 template <>
314 psin<Packet4f>(const Packet4f& x) {
315  return psincos_inner_msa_float</* sine */ true>(x);
316 }
317 
318 template <>
320 pcos<Packet4f>(const Packet4f& x) {
321  return psincos_inner_msa_float</* sine */ false>(x);
322 }
323 
324 template <>
327  // Limiting double-precision pexp's argument to [-1024, +1024] lets pexp
328  // reach 0 and INFINITY naturally.
329  static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0);
330  static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0);
331  static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
332  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
333  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
334  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
335  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
336  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
337  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
338  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
339  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
340  static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
341  static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
342  static _EIGEN_DECLARE_CONST_Packet2d(1, 1.0);
343  static _EIGEN_DECLARE_CONST_Packet2d(2, 2.0);
344 
345  Packet2d x = _x;
346 
347  // Clamp x.
348  x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x,
349  (v16u8)p2d_exp_lo);
350  x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x,
351  (v16u8)p2d_exp_hi);
352 
353  // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
354  Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0);
355  Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add);
356  Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2);
357  Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long);
358 
359  x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1);
360  x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2);
361 
362  x2 = pmul(x, x);
363 
364  Packet2d px = p2d_cephes_exp_p0;
365  px = pmadd(px, x2, p2d_cephes_exp_p1);
366  px = pmadd(px, x2, p2d_cephes_exp_p2);
367  px = pmul(px, x);
368 
369  Packet2d qx = p2d_cephes_exp_q0;
370  qx = pmadd(qx, x2, p2d_cephes_exp_q1);
371  qx = pmadd(qx, x2, p2d_cephes_exp_q2);
372  qx = pmadd(qx, x2, p2d_cephes_exp_q3);
373 
374  x = pdiv(px, psub(qx, px));
375  x = pmadd(p2d_2, x, p2d_1);
376 
377  // x *= 2**exponent.
378  x = __builtin_msa_fexp2_d(x, x2_long);
379 
380  return x;
381 }
382 
383 } // end namespace internal
384 
385 } // end namespace Eigen
386 
387 #endif // EIGEN_MATH_FUNCTIONS_MSA_H
EIGEN_DONT_INLINE Scalar zero()
Definition: svd_common.h:296
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psin< Packet4f >(const Packet4f &_x)
__vector unsigned int Packet4ui
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
__vector int Packet4i
Pose3 x2(Rot3::Ypr(0.0, 0.0, 0.0), l2)
EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h &a, const Packet8h &b)
#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Definition: Macros.h:985
EIGEN_DEVICE_FUNC Packet padd(const Packet &a, const Packet &b)
#define EIGEN_UNUSED
Definition: Macros.h:1067
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f ptanh< Packet4f >(const Packet4f &x)
__vector float Packet4f
RealScalar RealScalar * px
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f plog< Packet4f >(const Packet4f &_x)
Packet4f psincos_inner_msa_float(const Packet4f &_x)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pcos< Packet4f >(const Packet4f &_x)
EIGEN_DEVICE_FUNC const Scalar & q
EIGEN_STRONG_INLINE Packet8h pand(const Packet8h &a, const Packet8h &b)
Pose3 x3(Rot3::Ypr(M_PI/4.0, 0.0, 0.0), l2)
EIGEN_DEVICE_FUNC Packet pdiv(const Packet &a, const Packet &b)
float * p
EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f &a, const Packet4f &b, const Packet4f &c)
EIGEN_DEVICE_FUNC Packet psub(const Packet &a, const Packet &b)
static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pexp< Packet4f >(const Packet4f &_x)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d pexp< Packet2d >(const Packet2d &_x)
EIGEN_DEVICE_FUNC Packet pmul(const Packet &a, const Packet &b)
static _EIGEN_DECLARE_CONST_Packet2d(1, 1.0)
EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f &a)


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:34:45