Public Member Functions | Private Attributes | List of all members
Resolved_acc Class Reference

Resolved rate acceleration controller class. More...

#include <controller.h>

Public Member Functions

 Resolved_acc (const short dof=1)
 Constructor. More...
 
 Resolved_acc (const Robot_basic &robot, const Real Kvp, const Real Kpp, const Real Kvo, const Real Kpo)
 Constructor. More...
 
void set_Kpo (const Real Kpo)
 Assign the gain $k_{po}$. More...
 
void set_Kpp (const Real Kpp)
 Assign the gain $k_{pp}$. More...
 
void set_Kvo (const Real Kvo)
 Assign the gain $k_{vo}$. More...
 
void set_Kvp (const Real Kvp)
 Assign the gain $k_{vp}$. More...
 
ReturnMatrix torque_cmd (Robot_basic &robot, const ColumnVector &pdpp, const ColumnVector &pdp, const ColumnVector &pd, const ColumnVector &wdp, const ColumnVector &wd, const Quaternion &qd, const short link_pc, const Real dt)
 Output torque. More...
 

Private Attributes

ColumnVector a
 Control input. More...
 
double Kpo
 
double Kpp
 
double Kvo
 
double Kvp
 Controller gains. More...
 
ColumnVector p
 End effector position. More...
 
ColumnVector pp
 End effector velocity. More...
 
ColumnVector qp
 Robot joints velocity. More...
 
ColumnVector qpp
 Robot joints acceleration. More...
 
Quaternion quat
 Temporary quaternion. More...
 
ColumnVector quat_v_error
 Vector part of error quaternion. More...
 
Matrix Rot
 Temporay rotation matrix. More...
 
ColumnVector zero3
 $3\times 1$ zero vector. More...
 

Detailed Description

Resolved rate acceleration controller class.

The dynamic model of a robot manipulator can be expressed in joint space as

\[ B(q)\ddot{q} + C(q,\dot{q})\dot{q} + D\dot{q} + g(q) = \tau - J^T(q)f \]

According to the concept of inverse dynamics, the driving torques can be chosen as

\[ \tau = B(q)J^{-1}(q)\big(a - \dot{J}(q,\dot{q})\dot{q}\big) + C(q,\dot{q})\dot{q} + D\dot{q} + g(q) - J^T(q)f \]

where $a$ is the a new control input defined by

\[ a_p = \ddot{p}_d + k_{vp}\dot{\tilde{p}} + k_{pp}\tilde{p} \]

\[ a_o = \dot{\omega}_d + k_{vo}\dot{\tilde{\omega}} + k_{po}\tilde{v} \]

where $\tilde{x} = x_c - x_d$ and $ v$ is the vector par of the quaternion representing the orientation error between the desired and end effector frame. $k_{vp}$, $k_{pp}$, $k_{vo}$ and $k_{po}$ are positive gains.

Up to now this class has been tested only with a 6 dof robot.

Definition at line 171 of file controller.h.

Constructor & Destructor Documentation

Resolved_acc::Resolved_acc ( const short  dof = 1)

Constructor.

Definition at line 407 of file controller.cpp.

Resolved_acc::Resolved_acc ( const Robot_basic robot,
const Real  Kvp,
const Real  Kpp,
const Real  Kvo,
const Real  Kpo 
)

Constructor.

Definition at line 426 of file controller.cpp.

Member Function Documentation

void Resolved_acc::set_Kpo ( const Real  Kpo)

Assign the gain $k_{po}$.

Definition at line 465 of file controller.cpp.

void Resolved_acc::set_Kpp ( const Real  Kpp)

Assign the gain $k_{pp}$.

Definition at line 453 of file controller.cpp.

void Resolved_acc::set_Kvo ( const Real  Kvo)

Assign the gain $k_{vo}$.

Definition at line 459 of file controller.cpp.

void Resolved_acc::set_Kvp ( const Real  Kvp)

Assign the gain $k_{vp}$.

Definition at line 447 of file controller.cpp.

ReturnMatrix Resolved_acc::torque_cmd ( Robot_basic robot,
const ColumnVector pdpp,
const ColumnVector pdp,
const ColumnVector pd,
const ColumnVector wdp,
const ColumnVector wd,
const Quaternion quatd,
const short  link_pc,
const Real  dt 
)

Output torque.

For more robustess the damped least squares inverse Jacobian is used instead of the inverse Jacobian.

The quaternion -q represents exactly the same rotation as the quaternion q. The temporay quaternion, quat, is quatd plus a sign correction. It is customary to choose the sign G on q1 so that q0.Gq1 >=0 (the angle between q0 ang Gq1 is acute). This choice avoids extra spinning caused by the interpolated rotations.

Definition at line 471 of file controller.cpp.

Member Data Documentation

ColumnVector Resolved_acc::a
private

Control input.

Definition at line 193 of file controller.h.

double Resolved_acc::Kpo
private

Definition at line 188 of file controller.h.

double Resolved_acc::Kpp
private

Definition at line 188 of file controller.h.

double Resolved_acc::Kvo
private

Definition at line 188 of file controller.h.

double Resolved_acc::Kvp
private

Controller gains.

Definition at line 188 of file controller.h.

ColumnVector Resolved_acc::p
private

End effector position.

Definition at line 193 of file controller.h.

ColumnVector Resolved_acc::pp
private

End effector velocity.

Definition at line 193 of file controller.h.

ColumnVector Resolved_acc::qp
private

Robot joints velocity.

Definition at line 193 of file controller.h.

ColumnVector Resolved_acc::qpp
private

Robot joints acceleration.

Definition at line 193 of file controller.h.

Quaternion Resolved_acc::quat
private

Temporary quaternion.

Definition at line 200 of file controller.h.

ColumnVector Resolved_acc::quat_v_error
private

Vector part of error quaternion.

Definition at line 193 of file controller.h.

Matrix Resolved_acc::Rot
private

Temporay rotation matrix.

Definition at line 192 of file controller.h.

ColumnVector Resolved_acc::zero3
private

$3\times 1$ zero vector.

Definition at line 193 of file controller.h.


The documentation for this class was generated from the following files:


kni
Author(s): Martin Günther
autogenerated on Fri Jun 7 2019 22:06:46