ForwardDeclarations.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_FORWARDDECLARATIONS_H
12 #define EIGEN_FORWARDDECLARATIONS_H
13 
14 namespace Eigen {
15 namespace internal {
16 
17 template<typename T> struct traits;
18 
19 // here we say once and for all that traits<const T> == traits<T>
20 // When constness must affect traits, it has to be constness on template parameters on which T itself depends.
21 // For example, traits<Map<const T> > != traits<Map<T> >, but
22 // traits<const Map<T> > == traits<Map<T> >
23 template<typename T> struct traits<const T> : traits<T> {};
24 
25 template<typename Derived> struct has_direct_access
26 {
27  enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
28 };
29 
30 template<typename Derived> struct accessors_level
31 {
33  has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
34  value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
35  : (has_write_access ? WriteAccessors : ReadOnlyAccessors)
36  };
37 };
38 
39 } // end namespace internal
40 
41 template<typename T> struct NumTraits;
42 
43 template<typename Derived> struct EigenBase;
44 template<typename Derived> class DenseBase;
45 template<typename Derived> class PlainObjectBase;
46 
47 
48 template<typename Derived,
51 
52 template<typename _Scalar, int _Rows, int _Cols,
53  int _Options = AutoAlign |
54 #if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
55  // workaround a bug in at least gcc 3.4.6
56  // the innermost ?: ternary operator is misparsed. We write it slightly
57  // differently and this makes gcc 3.4.6 happy, but it's ugly.
58  // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
59  // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
60  ( (_Rows==1 && _Cols!=1) ? RowMajor
61  : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
62  : ColMajor ),
63 #else
64  ( (_Rows==1 && _Cols!=1) ? RowMajor
65  : (_Cols==1 && _Rows!=1) ? ColMajor
67 #endif
68  int _MaxRows = _Rows,
69  int _MaxCols = _Cols
70 > class Matrix;
71 
72 template<typename Derived> class MatrixBase;
73 template<typename Derived> class ArrayBase;
74 
75 template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged;
76 template<typename ExpressionType, template <typename> class StorageBase > class NoAlias;
77 template<typename ExpressionType> class NestByValue;
78 template<typename ExpressionType> class ForceAlignedAccess;
79 template<typename ExpressionType> class SwapWrapper;
80 
81 template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block;
82 
83 template<typename MatrixType, int Size=Dynamic> class VectorBlock;
84 template<typename MatrixType> class Transpose;
85 template<typename MatrixType> class Conjugate;
86 template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
87 template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
88 template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
89 template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
90 template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp;
91 template<typename Derived, typename Lhs, typename Rhs> class ProductBase;
92 template<typename Lhs, typename Rhs, int Mode> class GeneralProduct;
93 template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct;
94 
95 template<typename Derived> class DiagonalBase;
96 template<typename _DiagonalVectorType> class DiagonalWrapper;
97 template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
98 template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
99 template<typename MatrixType, int Index = 0> class Diagonal;
100 template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
101 template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
102 template<typename Derived> class PermutationBase;
103 template<typename Derived> class TranspositionsBase;
104 template<typename _IndicesType> class PermutationWrapper;
105 template<typename _IndicesType> class TranspositionsWrapper;
106 
107 template<typename Derived,
109 > class MapBase;
110 template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
111 template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
112 
113 template<typename Derived> class TriangularBase;
114 template<typename MatrixType, unsigned int Mode> class TriangularView;
115 template<typename MatrixType, unsigned int Mode> class SelfAdjointView;
116 template<typename MatrixType> class SparseView;
117 template<typename ExpressionType> class WithFormat;
118 template<typename MatrixType> struct CommaInitializer;
119 template<typename Derived> class ReturnByValue;
120 template<typename ExpressionType> class ArrayWrapper;
121 template<typename ExpressionType> class MatrixWrapper;
122 
123 namespace internal {
124 template<typename DecompositionType, typename Rhs> struct solve_retval_base;
125 template<typename DecompositionType, typename Rhs> struct solve_retval;
126 template<typename DecompositionType> struct kernel_retval_base;
127 template<typename DecompositionType> struct kernel_retval;
128 template<typename DecompositionType> struct image_retval_base;
129 template<typename DecompositionType> struct image_retval;
130 } // end namespace internal
131 
132 namespace internal {
133 template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
134 }
135 
136 namespace internal {
137 template<typename Lhs, typename Rhs> struct product_type;
138 }
139 
140 template<typename Lhs, typename Rhs,
141  int ProductType = internal::product_type<Lhs,Rhs>::value>
142 struct ProductReturnType;
143 
144 // this is a workaround for sun CC
145 template<typename Lhs, typename Rhs> struct LazyProductReturnType;
146 
147 namespace internal {
148 
149 // Provides scalar/packet-wise product and product with accumulation
150 // with optional conjugation of the arguments.
151 template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper;
152 
153 template<typename Scalar> struct scalar_sum_op;
154 template<typename Scalar> struct scalar_difference_op;
155 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op;
156 template<typename Scalar> struct scalar_opposite_op;
157 template<typename Scalar> struct scalar_conjugate_op;
158 template<typename Scalar> struct scalar_real_op;
159 template<typename Scalar> struct scalar_imag_op;
160 template<typename Scalar> struct scalar_abs_op;
161 template<typename Scalar> struct scalar_abs2_op;
162 template<typename Scalar> struct scalar_sqrt_op;
163 template<typename Scalar> struct scalar_exp_op;
164 template<typename Scalar> struct scalar_log_op;
165 template<typename Scalar> struct scalar_cos_op;
166 template<typename Scalar> struct scalar_sin_op;
167 template<typename Scalar> struct scalar_acos_op;
168 template<typename Scalar> struct scalar_asin_op;
169 template<typename Scalar> struct scalar_tan_op;
170 template<typename Scalar> struct scalar_pow_op;
171 template<typename Scalar> struct scalar_inverse_op;
172 template<typename Scalar> struct scalar_square_op;
173 template<typename Scalar> struct scalar_cube_op;
174 template<typename Scalar, typename NewType> struct scalar_cast_op;
175 template<typename Scalar> struct scalar_multiple_op;
176 template<typename Scalar> struct scalar_quotient1_op;
177 template<typename Scalar> struct scalar_min_op;
178 template<typename Scalar> struct scalar_max_op;
179 template<typename Scalar> struct scalar_random_op;
180 template<typename Scalar> struct scalar_add_op;
181 template<typename Scalar> struct scalar_constant_op;
182 template<typename Scalar> struct scalar_identity_op;
183 
184 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
185 template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
186 template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_quotient_op;
187 
188 } // end namespace internal
189 
190 struct IOFormat;
191 
192 // Array module
193 template<typename _Scalar, int _Rows, int _Cols,
194  int _Options = AutoAlign |
195 #if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
196  // workaround a bug in at least gcc 3.4.6
197  // the innermost ?: ternary operator is misparsed. We write it slightly
198  // differently and this makes gcc 3.4.6 happy, but it's ugly.
199  // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
200  // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
201  ( (_Rows==1 && _Cols!=1) ? RowMajor
202  : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
203  : ColMajor ),
204 #else
205  ( (_Rows==1 && _Cols!=1) ? RowMajor
206  : (_Cols==1 && _Rows!=1) ? ColMajor
207  : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
208 #endif
209  int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
210 template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
211 template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
212 template<typename ExpressionType, int Direction> class VectorwiseOp;
213 template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
214 template<typename MatrixType, int Direction = BothDirections> class Reverse;
215 
216 template<typename MatrixType> class FullPivLU;
217 template<typename MatrixType> class PartialPivLU;
218 namespace internal {
219 template<typename MatrixType> struct inverse_impl;
220 }
221 template<typename MatrixType> class HouseholderQR;
222 template<typename MatrixType> class ColPivHouseholderQR;
223 template<typename MatrixType> class FullPivHouseholderQR;
224 template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
225 template<typename MatrixType, int UpLo = Lower> class LLT;
226 template<typename MatrixType, int UpLo = Lower> class LDLT;
227 template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
228 template<typename Scalar> class JacobiRotation;
229 
230 // Geometry module:
231 template<typename Derived, int _Dim> class RotationBase;
232 template<typename Lhs, typename Rhs> class Cross;
233 template<typename Derived> class QuaternionBase;
234 template<typename Scalar> class Rotation2D;
235 template<typename Scalar> class AngleAxis;
236 template<typename Scalar,int Dim> class Translation;
237 
238 #ifdef EIGEN2_SUPPORT
239 template<typename Derived, int _Dim> class eigen2_RotationBase;
240 template<typename Lhs, typename Rhs> class eigen2_Cross;
241 template<typename Scalar> class eigen2_Quaternion;
242 template<typename Scalar> class eigen2_Rotation2D;
243 template<typename Scalar> class eigen2_AngleAxis;
244 template<typename Scalar,int Dim> class eigen2_Transform;
245 template <typename _Scalar, int _AmbientDim> class eigen2_ParametrizedLine;
246 template <typename _Scalar, int _AmbientDim> class eigen2_Hyperplane;
247 template<typename Scalar,int Dim> class eigen2_Translation;
248 template<typename Scalar,int Dim> class eigen2_Scaling;
249 #endif
250 
251 #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
252 template<typename Scalar> class Quaternion;
253 template<typename Scalar,int Dim> class Transform;
254 template <typename _Scalar, int _AmbientDim> class ParametrizedLine;
255 template <typename _Scalar, int _AmbientDim> class Hyperplane;
256 template<typename Scalar,int Dim> class Scaling;
257 #endif
258 
259 #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
260 template<typename Scalar, int Options = AutoAlign> class Quaternion;
261 template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
262 template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
263 template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
264 template<typename Scalar> class UniformScaling;
265 template<typename MatrixType,int Direction> class Homogeneous;
266 #endif
267 
268 // MatrixFunctions module
269 template<typename Derived> struct MatrixExponentialReturnValue;
270 template<typename Derived> class MatrixFunctionReturnValue;
271 template<typename Derived> class MatrixSquareRootReturnValue;
272 template<typename Derived> class MatrixLogarithmReturnValue;
273 template<typename Derived> class MatrixPowerReturnValue;
274 template<typename Derived, typename Lhs, typename Rhs> class MatrixPowerProduct;
275 
276 namespace internal {
277 template <typename Scalar>
279 {
280  typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
281  typedef ComplexScalar type(ComplexScalar, int);
282 };
283 }
284 
285 
286 #ifdef EIGEN2_SUPPORT
287 template<typename ExpressionType> class Cwise;
288 template<typename MatrixType> class Minor;
289 template<typename MatrixType> class LU;
290 template<typename MatrixType> class QR;
291 template<typename MatrixType> class SVD;
292 namespace internal {
293 template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type;
294 }
295 #endif
296 
297 } // end namespace Eigen
298 
299 #endif // EIGEN_FORWARDDECLARATIONS_H
Expression of the product of two general matrices or vectors.
Generic expression of a matrix where all coefficients are defined by a functor.
Robust Cholesky decomposition of a matrix with pivoting.
Definition: LDLT.h:45
std::complex< typename NumTraits< Scalar >::Real > ComplexScalar
Represents a possibly non uniform scaling transformation.
Base class for Map and Block expression with direct access.
Enforce aligned packet loads and stores regardless of what is requested.
Expression of a mathematical vector or matrix as an array object.
Definition: ArrayWrapper.h:36
Householder rank-revealing QR decomposition of a matrix with full pivoting.
Expression with modified flags.
Definition: Flagged.h:39
Definition: LU.h:16
Pseudo expression providing an operator = assuming no aliasing.
Definition: NoAlias.h:31
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:104
Expression of the transpose of a matrix.
Definition: Transpose.h:57
const unsigned int DirectAccessBit
Definition: Constants.h:142
const unsigned int LvalueBit
Definition: Constants.h:131
Represents a rectangular matrix with a banded storage.
Definition: BandMatrix.h:199
Represents a diagonal matrix with its storage.
LU decomposition of a matrix with partial pivoting, and related features.
Definition: LDLT.h:16
Holds strides information for Map.
Definition: Stride.h:44
Rotation given by a cosine-sine pair.
Generic expression of a partially reduxed matrix.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
Pseudo expression providing partial reduction operations.
Base class for all dense matrices, vectors, and arrays.
Definition: DenseBase.h:41
Base class for permutations.
Helper class used by the comma initializer operator.
Sequence of Householder reflections acting on subspaces with decreasing size.
Represents a translation transformation.
Permutation matrix.
Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector.
Expression of an array as a mathematical vector or matrix.
Definition: ArrayBase.h:15
Expression of a fixed-size or dynamic-size sub-vector.
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Pseudo expression providing additional coefficient-wise operations.
Definition: Cwise.h:50
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:50
Dense storage base class for matrices and arrays.
Expression of the multiple replication of a matrix or vector.
Definition: Replicate.h:62
Standard SVD decomposition of a matrix and associated features.
Definition: SVD.h:30
Common base class for compact rotation representations.
Expression of a minor.
Definition: Minor.h:53
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
Base class for all 1D and 2D array, and related expressions.
Definition: ArrayBase.h:39
Class to view a vector of integers as a permutation matrix.
Base class for quaternion expressions.
Expression which must be nested by value.
Definition: NestByValue.h:35
Definition: QR.h:17
ComplexScalar type(ComplexScalar, int)
Represents a rotation/orientation in a 2 dimensional space.
Expression of a fixed-size or dynamic-size block.
Definition: Core/Block.h:102
The quaternion class used to represent 3D orientations and rotations.
LU decomposition of a matrix with complete pivoting, and related features.
Level
Householder QR decomposition of a matrix.
General-purpose arrays with easy API for coefficient-wise operations.
Definition: Array.h:42
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Base class for triangular part in a matrix.
Expression of a diagonal matrix.
Helper class to get the correct and optimized returned type of operator*.
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:64
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:59
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
Pseudo expression providing matrix output with given format.
Definition: IO.h:90
Expression of the reverse of a vector or matrix.
Definition: Reverse.h:70
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Stores a set of parameters controlling the way matrices are printed.
Definition: IO.h:50
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Represents a sequence of transpositions (row/column interchange)
Represents an homogeneous transformation in a N dimensional space.
Expression of one (or a set of) homogeneous vector(s)
Definition: Homogeneous.h:61
Expression of a coefficient wise version of the C++ ternary operator ?:
Definition: Select.h:55


tuw_aruco
Author(s): Lukas Pfeifhofer
autogenerated on Mon Jun 10 2019 15:40:48