16 template<
typename MatrixType, 
int UpLo> 
struct LLT_Traits;
    50 template<
typename _MatrixType, 
int _UpLo> 
class LLT    55       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    56       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    57       Options = MatrixType::Options,
    58       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    60     typedef typename MatrixType::Scalar 
Scalar;
    62     typedef typename MatrixType::Index 
Index;
    66       AlignmentMask = int(PacketSize)-1,
    78     LLT() : m_matrix(), m_isInitialized(false) {}
    86     LLT(Index size) : m_matrix(size, size),
    87                     m_isInitialized(false) {}
    89     LLT(
const MatrixType& matrix)
    90       : m_matrix(matrix.rows(), matrix.cols()),
    91         m_isInitialized(false)
    97     inline typename Traits::MatrixU 
matrixU()
 const    99       eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   100       return Traits::getU(m_matrix);
   104     inline typename Traits::MatrixL 
matrixL()
 const   106       eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   107       return Traits::getL(m_matrix);
   120     template<
typename Rhs>
   124       eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   126                 && 
"LLT::solve(): invalid number of rows of the right hand side matrix b");
   130     #ifdef EIGEN2_SUPPORT   131     template<
typename OtherDerived, 
typename ResultType>
   134       *result = this->solve(b);
   138     bool isPositiveDefinite()
 const { 
return true; }
   141     template<
typename Derived>
   144     LLT& compute(
const MatrixType& matrix);
   152       eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   156     MatrixType reconstructedMatrix() 
const;
   166       eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   170     inline Index 
rows()
 const { 
return m_matrix.rows(); }
   171     inline Index 
cols()
 const { 
return m_matrix.cols(); }
   173     template<
typename VectorType>
   174     LLT rankUpdate(
const VectorType& vec, 
const RealScalar& sigma = 1);
   190 template<
typename MatrixType, 
typename VectorType>
   191 static typename MatrixType::Index 
llt_rank_update_lower(MatrixType& mat, 
const VectorType& vec, 
const typename MatrixType::RealScalar& sigma)
   194   typedef typename MatrixType::Scalar Scalar;
   195   typedef typename MatrixType::RealScalar RealScalar;
   196   typedef typename MatrixType::Index Index;
   203   Index n = mat.cols();
   213     temp = 
sqrt(sigma) * vec;
   215     for(Index i=0; i<n; ++i)
   223         ColXprSegment 
x(mat.col(i).tail(rs));
   224         TempVecSegment 
y(temp.tail(rs));
   233     for(Index j=0; j<n; ++j)
   237       Scalar wj = temp.coeff(j);
   239       RealScalar gamma = dj*beta + swj2;
   241       RealScalar 
x = dj + swj2/beta;
   242       if (x<=RealScalar(0))
   244       RealScalar nLjj = 
sqrt(x);
   245       mat.coeffRef(j,j) = nLjj;
   252         temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
   254           mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
   264   template<
typename MatrixType>
   265   static typename MatrixType::Index 
unblocked(MatrixType& mat)
   268     typedef typename MatrixType::Index Index;
   271     const Index size = mat.rows();
   272     for(Index k = 0; k < size; ++k)
   281       if (k>0) x -= A10.squaredNorm();
   282       if (x<=RealScalar(0))
   284       mat.coeffRef(k,k) = x = 
sqrt(x);
   285       if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
   286       if (rs>0) A21 *= RealScalar(1)/x;
   291   template<
typename MatrixType>
   292   static typename MatrixType::Index 
blocked(MatrixType& m)
   294     typedef typename MatrixType::Index Index;
   296     Index size = m.rows();
   300     Index blockSize = size/8;
   301     blockSize = (blockSize/16)*16;
   302     blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
   304     for (Index k=0; k<size; k+=blockSize)
   310       Index bs = (std::min)(blockSize, size-k);
   311       Index rs = size - k - bs;
   317       if((ret=unblocked(A11))>=0) 
return k+ret;
   318       if(rs>0) A11.adjoint().template triangularView<Upper>().
template solveInPlace<OnTheRight>(A21);
   319       if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); 
   324   template<
typename MatrixType, 
typename VectorType>
   325   static typename MatrixType::Index 
rankUpdate(MatrixType& mat, 
const VectorType& vec, 
const RealScalar& sigma)
   335   template<
typename MatrixType>
   341   template<
typename MatrixType>
   347   template<
typename MatrixType, 
typename VectorType>
   348   static typename MatrixType::Index 
rankUpdate(MatrixType& mat, 
const VectorType& vec, 
const RealScalar& sigma)
   359   static inline MatrixL 
getL(
const MatrixType& m) { 
return m; }
   360   static inline MatrixU 
getU(
const MatrixType& m) { 
return m.
adjoint(); }
   369   static inline MatrixL 
getL(
const MatrixType& m) { 
return m.
adjoint(); }
   370   static inline MatrixU 
getU(
const MatrixType& m) { 
return m; }
   384 template<
typename MatrixType, 
int _UpLo>
   388   const Index size = a.rows();
   389   m_matrix.resize(size, size);
   392   m_isInitialized = 
true;
   393   bool ok = Traits::inplace_decomposition(m_matrix);
   404 template<
typename _MatrixType, 
int _UpLo>
   405 template<
typename VectorType>
   420 template<
typename _MatrixType, 
int UpLo, 
typename Rhs>
   427   template<typename Dest> 
void evalTo(Dest& dst)
 const   430     dec().solveInPlace(dst);
   448 template<
typename MatrixType, 
int _UpLo>
   449 template<
typename Derived>
   452   eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   454   matrixL().solveInPlace(bAndX);
   455   matrixU().solveInPlace(bAndX);
   461 template<
typename MatrixType, 
int _UpLo>
   464   eigen_assert(m_isInitialized && 
"LLT is not initialized.");
   465   return matrixL() * matrixL().adjoint().toDenseMatrix();
   471 template<
typename Derived>
   481 template<
typename MatrixType, 
unsigned int UpLo>
   490 #endif // EIGEN_LLT_H const LLT< PlainObject, UpLo > llt() const 
MatrixType reconstructedMatrix() const 
VectorBlock< Derived > SegmentReturnType
#define EIGEN_STRONG_INLINE
const TriangularView< const typename MatrixType::AdjointReturnType, TransposeMode > adjoint() const 
const TriangularView< const MatrixType, Lower > MatrixL
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Expression of the transpose of a matrix. 
Traits::MatrixU matrixU() const 
MatrixType::Scalar Scalar
LLT(Index size)
Default Constructor with memory preallocation. 
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1,!IsRowMajor > ColXpr
const MatrixType & matrixLLT() const 
Rotation given by a cosine-sine pair. 
static bool inplace_decomposition(MatrixType &m)
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
const TriangularView< const typename MatrixType::AdjointReturnType, Upper > MatrixU
static MatrixType::Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs2_op< Scalar >, const Derived > abs2() const 
ComputationInfo info() const 
Reports whether previous computation was successful. 
void solveInPlace(MatrixBase< Derived > &bAndX) const 
LLT< _MatrixType, UpLo > LLTType
LLT rankUpdate(const VectorType &vec, const RealScalar &sigma=1)
RealReturnType real() const 
LLT(const MatrixType &matrix)
static MatrixType::Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
internal::LLT_Traits< MatrixType, UpLo > Traits
Standard Cholesky decomposition (LL^T) of a matrix and associated features. 
NumTraits< Scalar >::Real RealScalar
static MatrixType::Index blocked(MatrixType &m)
TFSIMD_FORCE_INLINE const tfScalar & x() const 
static EIGEN_STRONG_INLINE MatrixType::Index blocked(MatrixType &mat)
static bool inplace_decomposition(MatrixType &m)
Expression of a fixed-size or dynamic-size block. 
void apply_rotation_in_the_plane(VectorX &_x, VectorY &_y, const JacobiRotation< OtherScalar > &j)
static MatrixU getU(const MatrixType &m)
const internal::solve_retval< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const 
static MatrixU getU(const MatrixType &m)
static MatrixType::Index unblocked(MatrixType &mat)
Base class for triangular part in a matrix. 
const TriangularView< const MatrixType, Upper > MatrixU
LLT & compute(const MatrixType &matrix)
const TriangularView< const typename MatrixType::AdjointReturnType, Lower > MatrixL
#define EIGEN_MAKE_SOLVE_HELPERS(DecompositionType, Rhs)
const LLT< PlainObject > llt() const 
LLT()
Default Constructor. 
const CwiseUnaryOp< internal::scalar_sqrt_op< Scalar >, const Derived > sqrt() const 
Traits::MatrixL matrixL() const 
static MatrixL getL(const MatrixType &m)
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
Base class for all dense matrices, vectors, and expressions. 
static EIGEN_STRONG_INLINE MatrixType::Index unblocked(MatrixType &mat)
static MatrixL getL(const MatrixType &m)
NumTraits< typename MatrixType::Scalar >::Real RealScalar
static MatrixType::Index llt_rank_update_lower(MatrixType &mat, const VectorType &vec, const typename MatrixType::RealScalar &sigma)
NumTraits< Scalar >::Real RealScalar