Public Types | Public Member Functions | Static Public Member Functions | Private Attributes | Friends | List of all members
Eigen::EulerAngles< _Scalar, _System > Class Template Reference

Represents a rotation in a 3 dimensional space as three Euler angles. More...

#include <EulerAngles.h>

Inheritance diagram for Eigen::EulerAngles< _Scalar, _System >:
Inheritance graph
[legend]

Public Types

typedef AngleAxis< ScalarAngleAxisType
 
typedef Matrix< Scalar, 3, 3 > Matrix3
 
typedef Quaternion< ScalarQuaternionType
 
typedef _Scalar Scalar
 
typedef _System System
 
typedef Matrix< Scalar, 3, 1 > Vector3
 
- Public Types inherited from Eigen::RotationBase< EulerAngles< _Scalar, _System >, 3 >
enum  
 
typedef Matrix< Scalar, Dim, DimRotationMatrixType
 
typedef internal::traits< EulerAngles< _Scalar, _System > >::Scalar Scalar
 
typedef Matrix< Scalar, Dim, 1 > VectorType
 

Public Member Functions

Scalar alpha () const
 
Scalaralpha ()
 
const Vector3angles () const
 
Vector3angles ()
 
Scalar beta () const
 
Scalarbeta ()
 
 EulerAngles ()
 
 EulerAngles (const Scalar &alpha, const Scalar &beta, const Scalar &gamma)
 
template<typename Derived >
 EulerAngles (const MatrixBase< Derived > &m)
 
template<typename Derived >
 EulerAngles (const MatrixBase< Derived > &m, bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
 
template<typename Derived >
 EulerAngles (const RotationBase< Derived, 3 > &rot)
 
template<typename Derived >
 EulerAngles (const RotationBase< Derived, 3 > &rot, bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
 
Scalar gamma () const
 
Scalargamma ()
 
EulerAngles inverse () const
 
 operator QuaternionType () const
 
EulerAngles operator- () const
 
template<typename Derived >
EulerAnglesoperator= (const MatrixBase< Derived > &m)
 
template<typename Derived >
EulerAnglesoperator= (const RotationBase< Derived, 3 > &rot)
 
Matrix3 toRotationMatrix () const
 
- Public Member Functions inherited from Eigen::RotationBase< EulerAngles< _Scalar, _System >, 3 >
EIGEN_DEVICE_FUNC VectorType _transformVector (const OtherVectorType &v) const
 
EIGEN_DEVICE_FUNC const EulerAngles< _Scalar, _System > & derived () const
 
EIGEN_DEVICE_FUNC EulerAngles< _Scalar, _System > & derived ()
 
EIGEN_DEVICE_FUNC EulerAngles< _Scalar, _System > inverse () const
 
EIGEN_DEVICE_FUNC RotationMatrixType matrix () const
 
EIGEN_DEVICE_FUNC Transform< Scalar, Dim, Isometry > operator* (const Translation< Scalar, Dim > &t) const
 
EIGEN_DEVICE_FUNC RotationMatrixType operator* (const UniformScaling< Scalar > &s) const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::rotation_base_generic_product_selector< EulerAngles< _Scalar, _System >, OtherDerived, OtherDerived::IsVectorAtCompileTime >::ReturnType operator* (const EigenBase< OtherDerived > &e) const
 
EIGEN_DEVICE_FUNC Transform< Scalar, Dim, Mode > operator* (const Transform< Scalar, Dim, Mode, Options > &t) const
 
EIGEN_DEVICE_FUNC RotationMatrixType toRotationMatrix () const
 

Static Public Member Functions

static Vector3 AlphaAxisVector ()
 
static Vector3 BetaAxisVector ()
 
template<bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Derived >
static EulerAngles FromRotation (const MatrixBase< Derived > &m)
 
template<bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Derived >
static EulerAngles FromRotation (const RotationBase< Derived, 3 > &rot)
 
static Vector3 GammaAxisVector ()
 

Private Attributes

Vector3 m_angles
 

Friends

std::ostream & operator<< (std::ostream &s, const EulerAngles< Scalar, System > &eulerAngles)
 

Detailed Description

template<typename _Scalar, class _System>
class Eigen::EulerAngles< _Scalar, _System >

Represents a rotation in a 3 dimensional space as three Euler angles.

Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.

Here is how intrinsic Euler angles works:

Note
This class support only intrinsic Euler angles for simplicity, see EulerSystem how to easily overcome this for extrinsic systems.

Rotation representation and conversions

It has been proved(see Wikipedia link below) that every rotation can be represented by Euler angles, but there is no singular representation (e.g. unlike rotation matrices). Therefore, you can convert from Eigen rotation and to them (including rotation matrices, which is not called "rotations" by Eigen design).

Euler angles usually used for:

However, Euler angles are slow comparing to quaternion or matrices, because their unnatural math definition, although it's simple for human. To overcome this, this class provide easy movement from the math friendly representation to the human friendly representation, and vise-versa.

All the user need to do is a safe simple C++ type conversion, and this class take care for the math. Additionally, some axes related computation is done in compile time.

Euler angles ranges in conversions

When converting some rotation to Euler angles, there are some ways you can guarantee the Euler angles ranges.

implicit ranges

When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI], unless you convert from some other Euler angles. In this case, the range is undefined (might be even less than -PI or greater than +2*PI).

See also
EulerAngles(const MatrixBase<Derived>&)
EulerAngles(const RotationBase<Derived, 3>&)

explicit ranges

When using explicit ranges, all angles are guarantee to be in the range you choose. In the range Boolean parameter, you're been ask whether you prefer the positive range or not:

compile time ranges

This is when you have compile time ranges and you prefer to use template parameter. (e.g. for performance)

See also
FromRotation()
run-time time ranges

Run-time ranges are also supported.

See also
EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)

Convenient user typedefs

Convenient typedefs for EulerAngles exist for float and double scalar, in a form of EulerAngles{A}{B}{C}{scalar}, e.g. EulerAnglesXYZd, EulerAnglesZYZf.

Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef. If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with a word that represent what you need.

Example

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/EulerAngles>
using namespace Eigen;
template<typename EulerSystem, typename Scalar>
bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
{
typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
using std::abs;
Scalar alphaRangeStart, alphaRangeEnd;
Scalar betaRangeStart, betaRangeEnd;
Scalar gammaRangeStart, gammaRangeEnd;
if (positiveRangeAlpha)
{
alphaRangeStart = Scalar(0);
alphaRangeEnd = Scalar(2 * EIGEN_PI);
}
else
{
alphaRangeStart = -Scalar(EIGEN_PI);
alphaRangeEnd = Scalar(EIGEN_PI);
}
if (positiveRangeBeta)
{
betaRangeStart = Scalar(0);
betaRangeEnd = Scalar(2 * EIGEN_PI);
}
else
{
betaRangeStart = -Scalar(EIGEN_PI);
betaRangeEnd = Scalar(EIGEN_PI);
}
if (positiveRangeGamma)
{
gammaRangeStart = Scalar(0);
gammaRangeEnd = Scalar(2 * EIGEN_PI);
}
else
{
gammaRangeStart = -Scalar(EIGEN_PI);
gammaRangeEnd = Scalar(EIGEN_PI);
}
const int i = EulerSystem::AlphaAxisAbs - 1;
const int j = EulerSystem::BetaAxisAbs - 1;
const int k = EulerSystem::GammaAxisAbs - 1;
const int iFactor = EulerSystem::IsAlphaOpposite ? -1 : 1;
const int jFactor = EulerSystem::IsBetaOpposite ? -1 : 1;
const int kFactor = EulerSystem::IsGammaOpposite ? -1 : 1;
const Vector3 I = EulerAnglesType::AlphaAxisVector();
const Vector3 J = EulerAnglesType::BetaAxisVector();
const Vector3 K = EulerAnglesType::GammaAxisVector();
EulerAnglesType e(ea[0], ea[1], ea[2]);
Matrix3 m(e);
Vector3 eabis = EulerAnglesType(m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
// Check that eabis in range
VERIFY(alphaRangeStart <= eabis[0] && eabis[0] <= alphaRangeEnd);
VERIFY(betaRangeStart <= eabis[1] && eabis[1] <= betaRangeEnd);
VERIFY(gammaRangeStart <= eabis[2] && eabis[2] <= gammaRangeEnd);
Vector3 eabis2 = m.eulerAngles(i, j, k);
// Invert the relevant axes
eabis2[0] *= iFactor;
eabis2[1] *= jFactor;
eabis2[2] *= kFactor;
// Saturate the angles to the correct range
if (positiveRangeAlpha && (eabis2[0] < 0))
eabis2[0] += Scalar(2 * EIGEN_PI);
if (positiveRangeBeta && (eabis2[1] < 0))
eabis2[1] += Scalar(2 * EIGEN_PI);
if (positiveRangeGamma && (eabis2[2] < 0))
eabis2[2] += Scalar(2 * EIGEN_PI);
VERIFY_IS_APPROX(eabis, eabis2);// Verify that our estimation is the same as m.eulerAngles() is
Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K));
VERIFY_IS_APPROX(m, mbis);
// Tests that are only relevant for no possitive range
if (!(positiveRangeAlpha || positiveRangeBeta || positiveRangeGamma))
{
/* If I==K, and ea[1]==0, then there no unique solution. */
/* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
// approx_or_less_than does not work for 0
VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
}
// Quaternions
QuaternionType q(e);
eabis = EulerAnglesType(q, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
}
template<typename EulerSystem, typename Scalar>
{
verify_euler_ranged<EulerSystem>(ea, false, false, false);
verify_euler_ranged<EulerSystem>(ea, false, false, true);
verify_euler_ranged<EulerSystem>(ea, false, true, false);
verify_euler_ranged<EulerSystem>(ea, false, true, true);
verify_euler_ranged<EulerSystem>(ea, true, false, false);
verify_euler_ranged<EulerSystem>(ea, true, false, true);
verify_euler_ranged<EulerSystem>(ea, true, true, false);
verify_euler_ranged<EulerSystem>(ea, true, true, true);
}
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
{
verify_euler<EulerSystemXYZ>(ea);
verify_euler<EulerSystemXYX>(ea);
verify_euler<EulerSystemXZY>(ea);
verify_euler<EulerSystemXZX>(ea);
verify_euler<EulerSystemYZX>(ea);
verify_euler<EulerSystemYZY>(ea);
verify_euler<EulerSystemYXZ>(ea);
verify_euler<EulerSystemYXY>(ea);
verify_euler<EulerSystemZXY>(ea);
verify_euler<EulerSystemZXZ>(ea);
verify_euler<EulerSystemZYX>(ea);
verify_euler<EulerSystemZYZ>(ea);
}
template<typename Scalar> void eulerangles()
{
typedef Array<Scalar,3,1> Array3;
typedef Quaternion<Scalar> Quaternionx;
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Quaternionx q1;
q1 = AngleAxisType(a, Vector3::Random().normalized());
Matrix3 m;
m = q1;
Vector3 ea = m.eulerAngles(0,1,2);
ea = m.eulerAngles(0,1,0);
// Check with purely random Quaternion:
q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
m = q1;
ea = m.eulerAngles(0,1,2);
ea = m.eulerAngles(0,1,0);
// Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
ea[1] = 0;
ea.head(2).setZero();
ea.setZero();
}
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( eulerangles<float>() );
CALL_SUBTEST_2( eulerangles<double>() );
}
}

Output:

Additional reading

If you're want to get more idea about how Euler system work in Eigen see EulerSystem.

More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles

Template Parameters
_Scalarthe scalar type, i.e., the type of the angles.
_Systemthe EulerSystem to use, which represents the axes of rotation.

Definition at line 111 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

Member Typedef Documentation

template<typename _Scalar, class _System>
typedef AngleAxis<Scalar> Eigen::EulerAngles< _Scalar, _System >::AngleAxisType

the equivalent angle-axis type

Definition at line 123 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
typedef Matrix<Scalar,3,3> Eigen::EulerAngles< _Scalar, _System >::Matrix3

the equivalent rotation matrix type

Definition at line 120 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
typedef Quaternion<Scalar> Eigen::EulerAngles< _Scalar, _System >::QuaternionType

the equivalent quaternion type

Definition at line 122 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
typedef _Scalar Eigen::EulerAngles< _Scalar, _System >::Scalar

the scalar type of the angles

Definition at line 115 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
typedef _System Eigen::EulerAngles< _Scalar, _System >::System

the EulerSystem to use, which represents the axes of rotation.

Definition at line 118 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
typedef Matrix<Scalar,3,1> Eigen::EulerAngles< _Scalar, _System >::Vector3

the equivalent 3 dimension vector type

Definition at line 121 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

Constructor & Destructor Documentation

template<typename _Scalar, class _System>
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( )
inline

Default constructor without initialization.

Definition at line 148 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const Scalar alpha,
const Scalar beta,
const Scalar gamma 
)
inline

Constructs and initialize Euler angles(alpha, beta, gamma).

Definition at line 150 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<typename Derived >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const MatrixBase< Derived > &  m)
inline

Constructs and initialize Euler angles from a 3x3 rotation matrix m.

Note
All angles will be in the range [-PI, PI].

Definition at line 158 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<typename Derived >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const MatrixBase< Derived > &  m,
bool  positiveRangeAlpha,
bool  positiveRangeBeta,
bool  positiveRangeGamma 
)
inline

Constructs and initialize Euler angles from a 3x3 rotation matrix m, with options to choose for each angle the requested range.

If positive range is true, then the specified angle will be in the range [0, +2*PI]. Otherwise, the specified angle will be in the range [-PI, +PI].

Parameters
mThe 3x3 rotation matrix to convert
positiveRangeAlphaIf true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeBetaIf true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeGammaIf true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].

Definition at line 172 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<typename Derived >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const RotationBase< Derived, 3 > &  rot)
inline

Constructs and initialize Euler angles from a rotation rot.

Note
All angles will be in the range [-PI, PI], unless rot is an EulerAngles. If rot is an EulerAngles, expected EulerAngles range is undefined. (Use other functions here for enforcing range if this effect is desired)

Definition at line 188 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<typename Derived >
Eigen::EulerAngles< _Scalar, _System >::EulerAngles ( const RotationBase< Derived, 3 > &  rot,
bool  positiveRangeAlpha,
bool  positiveRangeBeta,
bool  positiveRangeGamma 
)
inline

Constructs and initialize Euler angles from a rotation rot, with options to choose for each angle the requested range.

If positive range is true, then the specified angle will be in the range [0, +2*PI]. Otherwise, the specified angle will be in the range [-PI, +PI].

Parameters
rotThe 3x3 rotation matrix to convert
positiveRangeAlphaIf true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeBetaIf true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeGammaIf true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].

Definition at line 202 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

Member Function Documentation

template<typename _Scalar, class _System>
Scalar Eigen::EulerAngles< _Scalar, _System >::alpha ( ) const
inline
Returns
The value of the first angle.

Definition at line 217 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Scalar& Eigen::EulerAngles< _Scalar, _System >::alpha ( )
inline
Returns
A read-write reference to the angle of the first angle.

Definition at line 219 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
static Vector3 Eigen::EulerAngles< _Scalar, _System >::AlphaAxisVector ( )
inlinestatic
Returns
the axis vector of the first (alpha) rotation

Definition at line 126 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
const Vector3& Eigen::EulerAngles< _Scalar, _System >::angles ( ) const
inline
Returns
The angle values stored in a vector (alpha, beta, gamma).

Definition at line 212 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Vector3& Eigen::EulerAngles< _Scalar, _System >::angles ( )
inline
Returns
A read-write reference to the angle values stored in a vector (alpha, beta, gamma).

Definition at line 214 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Scalar Eigen::EulerAngles< _Scalar, _System >::beta ( ) const
inline
Returns
The value of the second angle.

Definition at line 222 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Scalar& Eigen::EulerAngles< _Scalar, _System >::beta ( )
inline
Returns
A read-write reference to the angle of the second angle.

Definition at line 224 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
static Vector3 Eigen::EulerAngles< _Scalar, _System >::BetaAxisVector ( )
inlinestatic
Returns
the axis vector of the second (beta) rotation

Definition at line 132 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Derived >
static EulerAngles Eigen::EulerAngles< _Scalar, _System >::FromRotation ( const MatrixBase< Derived > &  m)
inlinestatic

Constructs and initialize Euler angles from a 3x3 rotation matrix m, with options to choose for each angle the requested range (only in compile time).

If positive range is true, then the specified angle will be in the range [0, +2*PI]. Otherwise, the specified angle will be in the range [-PI, +PI].

Parameters
mThe 3x3 rotation matrix to convert
Template Parameters
positiveRangeAlphaIf true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeBetaIf true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeGammaIf true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].

Definition at line 265 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Derived >
static EulerAngles Eigen::EulerAngles< _Scalar, _System >::FromRotation ( const RotationBase< Derived, 3 > &  rot)
inlinestatic

Constructs and initialize Euler angles from a rotation rot, with options to choose for each angle the requested range (only in compile time).

If positive range is true, then the specified angle will be in the range [0, +2*PI]. Otherwise, the specified angle will be in the range [-PI, +PI].

Parameters
rotThe 3x3 rotation matrix to convert
Template Parameters
positiveRangeAlphaIf true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeBetaIf true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
positiveRangeGammaIf true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].

Definition at line 291 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Scalar Eigen::EulerAngles< _Scalar, _System >::gamma ( ) const
inline
Returns
The value of the third angle.

Definition at line 227 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Scalar& Eigen::EulerAngles< _Scalar, _System >::gamma ( )
inline
Returns
A read-write reference to the angle of the third angle.

Definition at line 229 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
static Vector3 Eigen::EulerAngles< _Scalar, _System >::GammaAxisVector ( )
inlinestatic
Returns
the axis vector of the third (gamma) rotation

Definition at line 138 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
EulerAngles Eigen::EulerAngles< _Scalar, _System >::inverse ( ) const
inline
Returns
The Euler angles rotation inverse (which is as same as the negative), (-alpha, -beta, -gamma).

Definition at line 234 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Eigen::EulerAngles< _Scalar, _System >::operator QuaternionType ( ) const
inline

Convert the Euler angles to quaternion.

Definition at line 337 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
EulerAngles Eigen::EulerAngles< _Scalar, _System >::operator- ( ) const
inline
Returns
The Euler angles rotation negative (which is as same as the inverse), (-alpha, -beta, -gamma).

Definition at line 244 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<typename Derived >
EulerAngles& Eigen::EulerAngles< _Scalar, _System >::operator= ( const MatrixBase< Derived > &  m)
inline

Set *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1).

Definition at line 312 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
template<typename Derived >
EulerAngles& Eigen::EulerAngles< _Scalar, _System >::operator= ( const RotationBase< Derived, 3 > &  rot)
inline

Set *this from a rotation.

Definition at line 323 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

template<typename _Scalar, class _System>
Matrix3 Eigen::EulerAngles< _Scalar, _System >::toRotationMatrix ( void  ) const
inline
Returns
an equivalent 3x3 rotation matrix.

Definition at line 331 of file unsupported/Eigen/src/EulerAngles/EulerAngles.h.

Friends And Related Function Documentation

template<typename _Scalar, class _System>
std::ostream& operator<< ( std::ostream &  s,
const EulerAngles< Scalar, System > &  eulerAngles 
)
friend

Member Data Documentation

template<typename _Scalar, class _System>
Vector3 Eigen::EulerAngles< _Scalar, _System >::m_angles
private

The documentation for this class was generated from the following file:


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:10:02