|
template<typename Scalar > |
static void | CalcEulerAngles (EulerAngles< Scalar, EulerSystem > &res, const typename EulerAngles< Scalar, EulerSystem >::Matrix3 &mat) |
|
template<bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Scalar > |
static void | CalcEulerAngles (EulerAngles< Scalar, EulerSystem > &res, const typename EulerAngles< Scalar, EulerSystem >::Matrix3 &mat) |
|
template<typename Scalar > |
static void | CalcEulerAngles (EulerAngles< Scalar, EulerSystem > &res, const typename EulerAngles< Scalar, EulerSystem >::Matrix3 &mat, bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma) |
|
template<typename Derived > |
static void | CalcEulerAngles_imp (Matrix< typename MatrixBase< Derived >::Scalar, 3, 1 > &res, const MatrixBase< Derived > &mat, internal::true_type) |
|
template<typename Derived > |
static void | CalcEulerAngles_imp (Matrix< typename MatrixBase< Derived >::Scalar, 3, 1 > &res, const MatrixBase< Derived > &mat, internal::false_type) |
|
template<int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class Eigen::EulerSystem< _AlphaAxis, _BetaAxis, _GammaAxis >
Represents a fixed Euler rotation system.
This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
You can use this class to get two things:
- Build an Euler system, and then pass it as a template parameter to EulerAngles.
- Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
Euler rotation is a set of three rotation on fixed axes. (see EulerAngles) This meta-class store constantly those signed axes. (see EulerAxis)
Types of Euler systems
All and only valid 3 dimension Euler rotation over standard signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
- all axes X, Y, Z in each valid order (see below what order is valid)
- rotation over the axis is supported both over the positive and negative directions.
- both tait bryan and proper/classic Euler angles (i.e. the opposite).
Since EulerSystem support both positive and negative directions, you may call this rotation distinction in other names:
- right handed or left handed
- counterclockwise or clockwise
Notice all axed combination are valid, and would trigger a static assertion. Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid. This yield two and only two classes:
- tait bryan - all unsigned axes are distinct, e.g. {X,Y,Z}
- proper/classic Euler angles - The first and the third unsigned axes is equal, and the second is different, e.g. {X,Y,X}
Intrinsic vs extrinsic Euler systems
Only intrinsic Euler systems are supported for simplicity. If you want to use extrinsic Euler systems, just use the equal intrinsic opposite order for axes and angles. I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
Convenient user typedefs
Convenient typedefs for EulerSystem exist (only for positive axes Euler systems), in a form of EulerSystem{A}{B}{C}, e.g. EulerSystemXYZ.
Additional reading
More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
- Template Parameters
-
_AlphaAxis | the first fixed EulerAxis |
_AlphaAxis | the second fixed EulerAxis |
_AlphaAxis | the third fixed EulerAxis |
Definition at line 120 of file EulerSystem.h.