Functions | |
def | best_fit_transform (A, B) |
def | icp (A, B, init_pose=None, max_iterations=20, tolerance=0.001) |
def | nearest_neighbor (src, dst) |
def icp.best_fit_transform | ( | A, | |
B | |||
) |
Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions Input: A: Nxm numpy array of corresponding points B: Nxm numpy array of corresponding points Returns: T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B R: mxm rotation matrix t: mx1 translation vector
def icp.icp | ( | A, | |
B, | |||
init_pose = None , |
|||
max_iterations = 20 , |
|||
tolerance = 0.001 |
|||
) |
The Iterative Closest Point method: finds best-fit transform that maps points A on to points B Input: A: Nxm numpy array of source mD points B: Nxm numpy array of destination mD point init_pose: (m+1)x(m+1) homogeneous transformation max_iterations: exit algorithm after max_iterations tolerance: convergence criteria Output: T: final homogeneous transformation that maps A on to B distances: Euclidean distances (errors) of the nearest neighbor i: number of iterations to converge
def icp.nearest_neighbor | ( | src, | |
dst | |||
) |