kd_util.cpp
Go to the documentation of this file.
1 //----------------------------------------------------------------------
2 // File: kd_util.cpp
3 // Programmer: Sunil Arya and David Mount
4 // Description: Common utilities for kd-trees
5 // Last modified: 01/04/05 (Version 1.0)
6 //----------------------------------------------------------------------
7 // Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
8 // David Mount. All Rights Reserved.
9 //
10 // This software and related documentation is part of the Approximate
11 // Nearest Neighbor Library (ANN). This software is provided under
12 // the provisions of the Lesser GNU Public License (LGPL). See the
13 // file ../ReadMe.txt for further information.
14 //
15 // The University of Maryland (U.M.) and the authors make no
16 // representations about the suitability or fitness of this software for
17 // any purpose. It is provided "as is" without express or implied
18 // warranty.
19 //----------------------------------------------------------------------
20 // History:
21 // Revision 0.1 03/04/98
22 // Initial release
23 //----------------------------------------------------------------------
24 
25 #include "kd_util.h" // kd-utility declarations
26 
27 #include <ANN/ANNperf.h> // performance evaluation
28 
29 //----------------------------------------------------------------------
30 // The following routines are utility functions for manipulating
31 // points sets, used in determining splitting planes for kd-tree
32 // construction.
33 //----------------------------------------------------------------------
34 
35 //----------------------------------------------------------------------
36 // NOTE: Virtually all point indexing is done through an index (i.e.
37 // permutation) array pidx. Consequently, a reference to the d-th
38 // coordinate of the i-th point is pa[pidx[i]][d]. The macro PA(i,d)
39 // is a shorthand for this.
40 //----------------------------------------------------------------------
41  // standard 2-d indirect indexing
42 #define PA(i,d) (pa[pidx[(i)]][(d)])
43  // accessing a single point
44 #define PP(i) (pa[pidx[(i)]])
45 
46 //----------------------------------------------------------------------
47 // annAspectRatio
48 // Compute the aspect ratio (ratio of longest to shortest side)
49 // of a rectangle.
50 //----------------------------------------------------------------------
51 
53  int dim, // dimension
54  const ANNorthRect &bnd_box) // bounding cube
55 {
56  ANNcoord length = bnd_box.hi[0] - bnd_box.lo[0];
57  ANNcoord min_length = length; // min side length
58  ANNcoord max_length = length; // max side length
59  for (int d = 0; d < dim; d++) {
60  length = bnd_box.hi[d] - bnd_box.lo[d];
61  if (length < min_length) min_length = length;
62  if (length > max_length) max_length = length;
63  }
64  return max_length/min_length;
65 }
66 
67 //----------------------------------------------------------------------
68 // annEnclRect, annEnclCube
69 // These utilities compute the smallest rectangle and cube enclosing
70 // a set of points, respectively.
71 //----------------------------------------------------------------------
72 
74  ANNpointArray pa, // point array
75  ANNidxArray pidx, // point indices
76  int n, // number of points
77  int dim, // dimension
78  ANNorthRect &bnds) // bounding cube (returned)
79 {
80  for (int d = 0; d < dim; d++) { // find smallest enclosing rectangle
81  ANNcoord lo_bnd = PA(0,d); // lower bound on dimension d
82  ANNcoord hi_bnd = PA(0,d); // upper bound on dimension d
83  for (int i = 0; i < n; i++) {
84  if (PA(i,d) < lo_bnd) lo_bnd = PA(i,d);
85  else if (PA(i,d) > hi_bnd) hi_bnd = PA(i,d);
86  }
87  bnds.lo[d] = lo_bnd;
88  bnds.hi[d] = hi_bnd;
89  }
90 }
91 
92 void annEnclCube( // compute smallest enclosing cube
93  ANNpointArray pa, // point array
94  ANNidxArray pidx, // point indices
95  int n, // number of points
96  int dim, // dimension
97  ANNorthRect &bnds) // bounding cube (returned)
98 {
99  int d;
100  // compute smallest enclosing rect
101  annEnclRect(pa, pidx, n, dim, bnds);
102 
103  ANNcoord max_len = 0; // max length of any side
104  for (d = 0; d < dim; d++) { // determine max side length
105  ANNcoord len = bnds.hi[d] - bnds.lo[d];
106  if (len > max_len) { // update max_len if longest
107  max_len = len;
108  }
109  }
110  for (d = 0; d < dim; d++) { // grow sides to match max
111  ANNcoord len = bnds.hi[d] - bnds.lo[d];
112  ANNcoord half_diff = (max_len - len) / 2;
113  bnds.lo[d] -= half_diff;
114  bnds.hi[d] += half_diff;
115  }
116 }
117 
118 //----------------------------------------------------------------------
119 // annBoxDistance - utility routine which computes distance from point to
120 // box (Note: most distances to boxes are computed using incremental
121 // distance updates, not this function.)
122 //----------------------------------------------------------------------
123 
124 ANNdist annBoxDistance( // compute distance from point to box
125  const ANNpoint q, // the point
126  const ANNpoint lo, // low point of box
127  const ANNpoint hi, // high point of box
128  int dim) // dimension of space
129 {
130  register ANNdist dist = 0.0; // sum of squared distances
131  register ANNdist t;
132 
133  for (register int d = 0; d < dim; d++) {
134  if (q[d] < lo[d]) { // q is left of box
135  t = ANNdist(lo[d]) - ANNdist(q[d]);
136  dist = ANN_SUM(dist, ANN_POW(t));
137  }
138  else if (q[d] > hi[d]) { // q is right of box
139  t = ANNdist(q[d]) - ANNdist(hi[d]);
140  dist = ANN_SUM(dist, ANN_POW(t));
141  }
142  }
143  ANN_FLOP(4*dim) // increment floating op count
144 
145  return dist;
146 }
147 
148 //----------------------------------------------------------------------
149 // annSpread - find spread along given dimension
150 // annMinMax - find min and max coordinates along given dimension
151 // annMaxSpread - find dimension of max spread
152 //----------------------------------------------------------------------
153 
154 ANNcoord annSpread( // compute point spread along dimension
155  ANNpointArray pa, // point array
156  ANNidxArray pidx, // point indices
157  int n, // number of points
158  int d) // dimension to check
159 {
160  ANNcoord min = PA(0,d); // compute max and min coords
161  ANNcoord max = PA(0,d);
162  for (int i = 1; i < n; i++) {
163  ANNcoord c = PA(i,d);
164  if (c < min) min = c;
165  else if (c > max) max = c;
166  }
167  return (max - min); // total spread is difference
168 }
169 
170 void annMinMax( // compute min and max coordinates along dim
171  ANNpointArray pa, // point array
172  ANNidxArray pidx, // point indices
173  int n, // number of points
174  int d, // dimension to check
175  ANNcoord &min, // minimum value (returned)
176  ANNcoord &max) // maximum value (returned)
177 {
178  min = PA(0,d); // compute max and min coords
179  max = PA(0,d);
180  for (int i = 1; i < n; i++) {
181  ANNcoord c = PA(i,d);
182  if (c < min) min = c;
183  else if (c > max) max = c;
184  }
185 }
186 
187 int annMaxSpread( // compute dimension of max spread
188  ANNpointArray pa, // point array
189  ANNidxArray pidx, // point indices
190  int n, // number of points
191  int dim) // dimension of space
192 {
193  int max_dim = 0; // dimension of max spread
194  ANNcoord max_spr = 0; // amount of max spread
195 
196  if (n == 0) return max_dim; // no points, who cares?
197 
198  for (int d = 0; d < dim; d++) { // compute spread along each dim
199  ANNcoord spr = annSpread(pa, pidx, n, d);
200  if (spr > max_spr) { // bigger than current max
201  max_spr = spr;
202  max_dim = d;
203  }
204  }
205  return max_dim;
206 }
207 
208 //----------------------------------------------------------------------
209 // annMedianSplit - split point array about its median
210 // Splits a subarray of points pa[0..n] about an element of given
211 // rank (median: n_lo = n/2) with respect to dimension d. It places
212 // the element of rank n_lo-1 correctly (because our splitting rule
213 // takes the mean of these two). On exit, the array is permuted so
214 // that:
215 //
216 // pa[0..n_lo-2][d] <= pa[n_lo-1][d] <= pa[n_lo][d] <= pa[n_lo+1..n-1][d].
217 //
218 // The mean of pa[n_lo-1][d] and pa[n_lo][d] is returned as the
219 // splitting value.
220 //
221 // All indexing is done indirectly through the index array pidx.
222 //
223 // This function uses the well known selection algorithm due to
224 // C.A.R. Hoare.
225 //----------------------------------------------------------------------
226 
227  // swap two points in pa array
228 #define PASWAP(a,b) { int tmp = pidx[a]; pidx[a] = pidx[b]; pidx[b] = tmp; }
229 
231  ANNpointArray pa, // points to split
232  ANNidxArray pidx, // point indices
233  int n, // number of points
234  int d, // dimension along which to split
235  ANNcoord &cv, // cutting value
236  int n_lo) // split into n_lo and n-n_lo
237 {
238  int l = 0; // left end of current subarray
239  int r = n-1; // right end of current subarray
240  while (l < r) {
241  register int i = (r+l)/2; // select middle as pivot
242  register int k;
243 
244  if (PA(i,d) > PA(r,d)) // make sure last > pivot
245  PASWAP(i,r)
246  PASWAP(l,i); // move pivot to first position
247 
248  ANNcoord c = PA(l,d); // pivot value
249  i = l;
250  k = r;
251  for(;;) { // pivot about c
252  while (PA(++i,d) < c) ;
253  while (PA(--k,d) > c) ;
254  if (i < k) PASWAP(i,k) else break;
255  }
256  PASWAP(l,k); // pivot winds up in location k
257 
258  if (k > n_lo) r = k-1; // recurse on proper subarray
259  else if (k < n_lo) l = k+1;
260  else break; // got the median exactly
261  }
262  if (n_lo > 0) { // search for next smaller item
263  ANNcoord c = PA(0,d); // candidate for max
264  int k = 0; // candidate's index
265  for (int i = 1; i < n_lo; i++) {
266  if (PA(i,d) > c) {
267  c = PA(i,d);
268  k = i;
269  }
270  }
271  PASWAP(n_lo-1, k); // max among pa[0..n_lo-1] to pa[n_lo-1]
272  }
273  // cut value is midpoint value
274  cv = (PA(n_lo-1,d) + PA(n_lo,d))/2.0;
275 }
276 
277 //----------------------------------------------------------------------
278 // annPlaneSplit - split point array about a cutting plane
279 // Split the points in an array about a given plane along a
280 // given cutting dimension. On exit, br1 and br2 are set so
281 // that:
282 //
283 // pa[ 0 ..br1-1] < cv
284 // pa[br1..br2-1] == cv
285 // pa[br2.. n -1] > cv
286 //
287 // All indexing is done indirectly through the index array pidx.
288 //
289 //----------------------------------------------------------------------
290 
291 void annPlaneSplit( // split points by a plane
292  ANNpointArray pa, // points to split
293  ANNidxArray pidx, // point indices
294  int n, // number of points
295  int d, // dimension along which to split
296  ANNcoord cv, // cutting value
297  int &br1, // first break (values < cv)
298  int &br2) // second break (values == cv)
299 {
300  int l = 0;
301  int r = n-1;
302  for(;;) { // partition pa[0..n-1] about cv
303  while (l < n && PA(l,d) < cv) l++;
304  while (r >= 0 && PA(r,d) >= cv) r--;
305  if (l > r) break;
306  PASWAP(l,r);
307  l++; r--;
308  }
309  br1 = l; // now: pa[0..br1-1] < cv <= pa[br1..n-1]
310  r = n-1;
311  for(;;) { // partition pa[br1..n-1] about cv
312  while (l < n && PA(l,d) <= cv) l++;
313  while (r >= br1 && PA(r,d) > cv) r--;
314  if (l > r) break;
315  PASWAP(l,r);
316  l++; r--;
317  }
318  br2 = l; // now: pa[br1..br2-1] == cv < pa[br2..n-1]
319 }
320 
321 
322 //----------------------------------------------------------------------
323 // annBoxSplit - split point array about a orthogonal rectangle
324 // Split the points in an array about a given orthogonal
325 // rectangle. On exit, n_in is set to the number of points
326 // that are inside (or on the boundary of) the rectangle.
327 //
328 // All indexing is done indirectly through the index array pidx.
329 //
330 //----------------------------------------------------------------------
331 
332 void annBoxSplit( // split points by a box
333  ANNpointArray pa, // points to split
334  ANNidxArray pidx, // point indices
335  int n, // number of points
336  int dim, // dimension of space
337  ANNorthRect &box, // the box
338  int &n_in) // number of points inside (returned)
339 {
340  int l = 0;
341  int r = n-1;
342  for(;;) { // partition pa[0..n-1] about box
343  while (l < n && box.inside(dim, PP(l))) l++;
344  while (r >= 0 && !box.inside(dim, PP(r))) r--;
345  if (l > r) break;
346  PASWAP(l,r);
347  l++; r--;
348  }
349  n_in = l; // now: pa[0..n_in-1] inside and rest outside
350 }
351 
352 //----------------------------------------------------------------------
353 // annSplitBalance - compute balance factor for a given plane split
354 // Balance factor is defined as the number of points lying
355 // below the splitting value minus n/2 (median). Thus, a
356 // median split has balance 0, left of this is negative and
357 // right of this is positive. (The points are unchanged.)
358 //----------------------------------------------------------------------
359 
360 int annSplitBalance( // determine balance factor of a split
361  ANNpointArray pa, // points to split
362  ANNidxArray pidx, // point indices
363  int n, // number of points
364  int d, // dimension along which to split
365  ANNcoord cv) // cutting value
366 {
367  int n_lo = 0;
368  for(int i = 0; i < n; i++) { // count number less than cv
369  if (PA(i,d) < cv) n_lo++;
370  }
371  return n_lo - n/2;
372 }
373 
374 //----------------------------------------------------------------------
375 // annBox2Bnds - convert bounding box to list of bounds
376 // Given two boxes, an inner box enclosed within a bounding
377 // box, this routine determines all the sides for which the
378 // inner box is strictly contained with the bounding box,
379 // and adds an appropriate entry to a list of bounds. Then
380 // we allocate storage for the final list of bounds, and return
381 // the resulting list and its size.
382 //----------------------------------------------------------------------
383 
384 void annBox2Bnds( // convert inner box to bounds
385  const ANNorthRect &inner_box, // inner box
386  const ANNorthRect &bnd_box, // enclosing box
387  int dim, // dimension of space
388  int &n_bnds, // number of bounds (returned)
389  ANNorthHSArray &bnds) // bounds array (returned)
390 {
391  int i;
392  n_bnds = 0; // count number of bounds
393  for (i = 0; i < dim; i++) {
394  if (inner_box.lo[i] > bnd_box.lo[i]) // low bound is inside
395  n_bnds++;
396  if (inner_box.hi[i] < bnd_box.hi[i]) // high bound is inside
397  n_bnds++;
398  }
399 
400  bnds = new ANNorthHalfSpace[n_bnds]; // allocate appropriate size
401 
402  int j = 0;
403  for (i = 0; i < dim; i++) { // fill the array
404  if (inner_box.lo[i] > bnd_box.lo[i]) {
405  bnds[j].cd = i;
406  bnds[j].cv = inner_box.lo[i];
407  bnds[j].sd = +1;
408  j++;
409  }
410  if (inner_box.hi[i] < bnd_box.hi[i]) {
411  bnds[j].cd = i;
412  bnds[j].cv = inner_box.hi[i];
413  bnds[j].sd = -1;
414  j++;
415  }
416  }
417 }
418 
419 //----------------------------------------------------------------------
420 // annBnds2Box - convert list of bounds to bounding box
421 // Given an enclosing box and a list of bounds, this routine
422 // computes the corresponding inner box. It is assumed that
423 // the box points have been allocated already.
424 //----------------------------------------------------------------------
425 
427  const ANNorthRect &bnd_box, // enclosing box
428  int dim, // dimension of space
429  int n_bnds, // number of bounds
430  ANNorthHSArray bnds, // bounds array
431  ANNorthRect &inner_box) // inner box (returned)
432 {
433  annAssignRect(dim, inner_box, bnd_box); // copy bounding box to inner
434 
435  for (int i = 0; i < n_bnds; i++) {
436  bnds[i].project(inner_box.lo); // project each endpoint
437  bnds[i].project(inner_box.hi);
438  }
439 }
d
ANNcoord cv
Definition: ANNx.h:135
void project(ANNpoint &q)
Definition: ANNx.h:162
void annEnclRect(ANNpointArray pa, ANNidxArray pidx, int n, int dim, ANNorthRect &bnds)
Definition: kd_util.cpp:73
void annMinMax(ANNpointArray pa, ANNidxArray pidx, int n, int d, ANNcoord &min, ANNcoord &max)
Definition: kd_util.cpp:170
#define PA(i, d)
Definition: kd_util.cpp:42
ANNpoint hi
Definition: ANNx.h:94
int k
Definition: ann_sample.cpp:53
void annPlaneSplit(ANNpointArray pa, ANNidxArray pidx, int n, int d, ANNcoord cv, int &br1, int &br2)
Definition: kd_util.cpp:291
#define ANN_FLOP(n)
Definition: ANNperf.h:131
double ANNcoord
Definition: ANN.h:158
ANNcoord annSpread(ANNpointArray pa, ANNidxArray pidx, int n, int d)
Definition: kd_util.cpp:154
void annBox2Bnds(const ANNorthRect &inner_box, const ANNorthRect &bnd_box, int dim, int &n_bnds, ANNorthHSArray &bnds)
Definition: kd_util.cpp:384
ANNpoint lo
Definition: ANNx.h:93
#define PASWAP(a, b)
Definition: kd_util.cpp:228
double annAspectRatio(int dim, const ANNorthRect &bnd_box)
Definition: kd_util.cpp:52
int dim
Definition: ann2fig.cpp:81
ANNpoint * ANNpointArray
Definition: ANN.h:376
void annBnds2Box(const ANNorthRect &bnd_box, int dim, int n_bnds, ANNorthHSArray bnds, ANNorthRect &inner_box)
Definition: kd_util.cpp:426
void annBoxSplit(ANNpointArray pa, ANNidxArray pidx, int n, int dim, ANNorthRect &box, int &n_in)
Definition: kd_util.cpp:332
void annMedianSplit(ANNpointArray pa, ANNidxArray pidx, int n, int d, ANNcoord &cv, int n_lo)
Definition: kd_util.cpp:230
int annSplitBalance(ANNpointArray pa, ANNidxArray pidx, int n, int d, ANNcoord cv)
Definition: kd_util.cpp:360
void annEnclCube(ANNpointArray pa, ANNidxArray pidx, int n, int dim, ANNorthRect &bnds)
Definition: kd_util.cpp:92
#define ANN_POW(v)
Definition: ANN.h:336
ANNidx * ANNidxArray
Definition: ANN.h:378
int max_dim
Definition: ann_test.cpp:477
int min(int a, int b)
ANNdist annBoxDistance(const ANNpoint q, const ANNpoint lo, const ANNpoint hi, int dim)
Definition: kd_util.cpp:124
#define ANN_SUM(x, y)
Definition: ANN.h:338
TFSIMD_FORCE_INLINE tfScalar length(const Quaternion &q)
void annAssignRect(int dim, ANNorthRect &dest, const ANNorthRect &source)
Definition: ANN.cpp:148
int annMaxSpread(ANNpointArray pa, ANNidxArray pidx, int n, int dim)
Definition: kd_util.cpp:187
#define PP(i)
Definition: kd_util.cpp:44
ANNbool inside(int dim, ANNpoint p)
Definition: ANN.cpp:157
ANNcoord * ANNpoint
Definition: ANN.h:375
double ANNdist
Definition: ANN.h:159


addwa_local_planner
Author(s): Xie Fusheng
autogenerated on Mon Jun 10 2019 15:52:59