144 A[4][ 2] = -75.0/64.0;
145 A[4][ 3] = 75.0/64.0;
170 A[6][ 0] = 29443841.0/614563906.0;
173 A[6][ 3] = 77736538.0/692538347.0;
174 A[6][ 4] = -28693883.0/1125000000.0;
175 A[6][ 5] = 23124283.0/1800000000.0;
184 A[7][ 0] = 16016141.0/946692911.0;
187 A[7][ 3] = 61564180.0/158732637.0;
188 A[7][ 4] = 22789713.0/633445777.0;
189 A[7][ 5] = 545815736.0/2771057229.0;
190 A[7][ 6] = -180193667.0/1043307555.0;
198 A[8][ 0] = 39632708.0/573591083.0;
201 A[8][ 3] = -433636366.0/683701615.0;
202 A[8][ 4] = -421739975.0/2616292301.0;
203 A[8][ 5] = 100302831.0/723423059.0;
204 A[8][ 6] = 790204164.0/839813087.0;
205 A[8][ 7] = 800635310.0/3783071287.0;
212 A[9][ 0] = 246121993.0/1340847787.0;
215 A[9][ 3] = -37695042795.0/15268766246.0;
216 A[9][ 4] = -309121744.0/1061227803.0;
217 A[9][ 5] = -12992083.0/490766935.0;
218 A[9][ 6] = 6005943493.0/2108947869.0;
219 A[9][ 7] = 393006217.0/1396673457.0;
220 A[9][ 8] = 123872331.0/1001029789.0;
226 A[10][ 0] = -1028468189.0/846180014.0;
229 A[10][ 3] = 8478235783.0/508512852.0;
230 A[10][ 4] = 1311729495.0/1432422823.0;
231 A[10][ 5] = -10304129995.0/1701304382.0;
232 A[10][ 6] = -48777925059.0/3047939560.0;
233 A[10][ 7] = 15336726248.0/1032824649.0;
234 A[10][ 8] = -45442868181.0/3398467696.0;
235 A[10][ 9] = 3065993473.0/597172653.0;
240 A[11][ 0] = 185892177.0/718116043.0;
243 A[11][ 3] = -3185094517.0/667107341.0;
244 A[11][ 4] = -477755414.0/1098053517.0;
245 A[11][ 5] = -703635378.0/230739211.0;
246 A[11][ 6] = 5731566787.0/1027545527.0;
247 A[11][ 7] = 5232866602.0/850066563.0;
248 A[11][ 8] = -4093664535.0/808688257.0;
249 A[11][ 9] = 3962137247.0/1805957418.0;
250 A[11][10] = 65686358.0/487910083.0;
254 A[12][ 0] = 403863854.0/491063109.0;
257 A[12][ 3] = -5068492393.0/434740067.0;
258 A[12][ 4] = -411421997.0/543043805.0;
259 A[12][ 5] = 652783627.0/914296604.0;
260 A[12][ 6] = 11173962825.0/925320556.0;
261 A[12][ 7] = -13158990841.0/6184727034.0;
262 A[12][ 8] = 3936647629.0/1978049680.0;
263 A[12][ 9] = -160528059.0/685178525.0;
264 A[12][10] = 248638103.0/1413531060.0;
270 b4[ 0] = 14005451.0/335480064.0;
275 b4[ 5] = -59238493.0/1068277825.0;
276 b4[ 6] = 181606767.0/758867731.0;
277 b4[ 7] = 561292985.0/797845732.0;
278 b4[ 8] = -1041891430.0/1371343529.0;
279 b4[ 9] = 760417239.0/1151165299.0;
280 b4[10] = 118820643.0/751138087.0;
281 b4[11] = -528747749.0/2220607170.0;
284 b5[ 0] = 13451932.0/455176623.0;
289 b5[ 5] = -808719846.0/976000145.0;
290 b5[ 6] = 1757004468.0/5645159321.0;
291 b5[ 7] = 656045339.0/265891186.0;
292 b5[ 8] = -3867574721.0/1518517206.0;
293 b5[ 9] = 465885868.0/322736535.0;
294 b5[10] = 53011238.0/667516719.0;
306 c[ 8] = 5490023248.0/9719169821.0;
308 c[10] = 1201146811.0/1299019798.0;
virtual Integrator * clone() const
virtual ~IntegratorRK78()
#define CLOSE_NAMESPACE_ACADO
Abstract base class for all kinds of algorithms for integrating differential equations (ODEs or DAEs)...
virtual void initializeButcherTableau()
Implements the Runge-Kutta-78 scheme for integrating ODEs.
virtual IntegratorRK & operator=(const IntegratorRK &arg)
#define BEGIN_NAMESPACE_ACADO
Abstract base class for all kinds of Runge-Kutta schemes for integrating ODEs.
virtual IntegratorRK78 & operator=(const IntegratorRK78 &arg)
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.