76 f << dy1 + p1*y1 - p2*y2*y3 ;
77 f << dy2 - p1*y1 + p2*y2*y3 + p3*y2*y2 ;
99 double x0[3] = { 1.0, 0.0, 0.0 };
100 double pp[3] = { 0.04, 1e+4, 3e+7 };
112 integrator.
integrate( t0, tend, x0, 0, pp );
121 integrator.
getX( differentialStates );
123 differentialStates.
print(
"x" );
returnValue print(std::ostream &stream=std::cout, const char *const name=DEFAULT_LABEL, const char *const startString=DEFAULT_START_STRING, const char *const endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const char *const colSeparator=DEFAULT_COL_SEPARATOR, const char *const rowSeparator=DEFAULT_ROW_SEPARATOR) const
returnValue getX(DVector &xEnd) const
Implements the backward-differentiation formula for integrating DAEs.
returnValue set(OptionsName name, int value)
#define USING_NAMESPACE_ACADO
Provides a time grid consisting of vector-valued optimization variables at each grid point...
returnValue integrate(double t0, double tend, double *x0, double *xa=0, double *p=0, double *u=0, double *w=0)
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.