10 #ifndef EIGEN_INCOMPLETE_LUT_H 11 #define EIGEN_INCOMPLETE_LUT_H 27 template <
typename VectorV,
typename VectorI,
typename Index>
30 typedef typename VectorV::RealScalar RealScalar;
40 if (ncut < first || ncut > last )
return 0;
44 RealScalar abskey =
abs(
row(mid));
45 for (Index j = first + 1; j <= last; j++) {
46 if (
abs(
row(j)) > abskey) {
49 swap(ind(mid), ind(j));
53 swap(
row(mid),
row(first));
54 swap(ind(mid), ind(first));
56 if (mid > ncut) last = mid - 1;
57 else if (mid < ncut ) first = mid + 1;
58 }
while (mid != ncut );
95 template <
typename _Scalar>
109 : m_droptol(
NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
110 m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
113 template<
typename MatrixType>
115 : m_droptol(droptol),m_fillfactor(fillfactor),
116 m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
122 Index
rows()
const {
return m_lu.rows(); }
124 Index
cols()
const {
return m_lu.cols(); }
133 eigen_assert(m_isInitialized &&
"IncompleteLUT is not initialized.");
137 template<
typename MatrixType>
138 void analyzePattern(
const MatrixType& amat);
140 template<
typename MatrixType>
141 void factorize(
const MatrixType& amat);
148 template<
typename MatrixType>
151 analyzePattern(amat);
153 m_isInitialized = m_factorizationIsOk;
157 void setDroptol(
const RealScalar& droptol);
158 void setFillfactor(
int fillfactor);
160 template<
typename Rhs,
typename Dest>
164 x = m_lu.template triangularView<UnitLower>().solve(x);
165 x = m_lu.template triangularView<Upper>().solve(x);
172 eigen_assert(m_isInitialized &&
"IncompleteLUT is not initialized.");
174 &&
"IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
182 inline bool operator() (
const Index&
row,
const Index&
col,
const Scalar&)
const 205 template<
typename Scalar>
208 this->m_droptol = droptol;
215 template<
typename Scalar>
218 this->m_fillfactor = fillfactor;
221 template <
typename Scalar>
222 template<
typename _MatrixType>
233 internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);
235 m_Pinv = m_P.inverse();
237 m_analysisIsOk =
true;
240 template <
typename Scalar>
241 template<
typename _MatrixType>
248 eigen_assert((amat.rows() == amat.cols()) &&
"The factorization should be done on a square matrix");
249 Index n = amat.cols();
257 eigen_assert(m_analysisIsOk &&
"You must first call analyzePattern()");
267 Index fill_in =
static_cast<Index
> (amat.nonZeros()*m_fillfactor)/n+1;
268 if (fill_in > n) fill_in = n;
271 Index nnzL = fill_in/2;
273 m_lu.reserve(n * (nnzL + nnzU + 1));
276 for (Index ii = 0; ii < n; ii++)
285 RealScalar rownorm = 0;
287 typename FactorType::InnerIterator j_it(mat, ii);
290 Index k = j_it.index();
295 u(sizel) = j_it.value();
301 u(ii) = j_it.value();
306 Index jpos = ii + sizeu;
308 u(jpos) = j_it.value();
322 rownorm =
sqrt(rownorm);
332 Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k);
334 if (minrow != ju(jj))
339 jr(minrow) = jj; jr(j) = k;
346 typename FactorType::InnerIterator ki_it(m_lu, minrow);
347 while (ki_it && ki_it.index() < minrow) ++ki_it;
349 Scalar fact = u(jj) / ki_it.value();
352 if(
abs(fact) <= m_droptol)
360 for (; ki_it; ++ki_it)
362 Scalar prod = fact * ki_it.value();
363 Index j = ki_it.index();
396 for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
402 len = (std::min)(sizel, nnzL);
409 for(Index k = 0; k < len; k++)
410 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
414 if (u(ii) == Scalar(0))
415 u(ii) =
sqrt(m_droptol) * rownorm;
416 m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
421 for(Index k = 1; k < sizeu; k++)
423 if(
abs(u(ii+k)) > m_droptol * rownorm )
426 u(ii + len) = u(ii + k);
427 ju(ii + len) = ju(ii + k);
431 len = (std::min)(sizeu, nnzU);
437 for(Index k = ii + 1; k < ii + len; k++)
438 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
442 m_lu.makeCompressed();
444 m_factorizationIsOk =
true;
450 template<
typename _MatrixType,
typename Rhs>
457 template<typename Dest>
void evalTo(Dest& dst)
const 459 dec()._solve(
rhs(),dst);
467 #endif // EIGEN_INCOMPLETE_LUT_H
IntermediateState sqrt(const Expression &arg)
VectorBlock< Derived > SegmentReturnType
IncompleteLUT< _MatrixType > Dec
PermutationMatrix< Dynamic, Dynamic, Index > m_Pinv
iterative scaling algorithm to equilibrate rows and column norms in matrices
const internal::solve_retval< IncompleteLUT, Rhs > solve(const MatrixBase< Rhs > &b) const
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
#define eigen_internal_assert(x)
IncompleteLUT(const MatrixType &mat, const RealScalar &droptol=NumTraits< Scalar >::dummy_precision(), int fillfactor=10)
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs2_op< Scalar >, const Derived > abs2() const
SparseMatrix< Scalar, ColMajor > PermutType
void setDroptol(const RealScalar &droptol)
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > abs() const
SparseSymmetricPermutationProduct< Derived, Upper|Lower > twistedBy(const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const
PermutationMatrix< Dynamic, Dynamic, Index > m_P
void prune(const Scalar &reference, const RealScalar &epsilon=NumTraits< RealScalar >::dummy_precision())
void setFillfactor(int fillfactor)
IncompleteLUT< Scalar > & compute(const MatrixType &amat)
void analyzePattern(const MatrixType &amat)
Transpose< Derived > transpose()
ComputationInfo info() const
Reports whether previous computation was successful.
Incomplete LU factorization with dual-threshold strategy.
internal::traits< Derived >::Index Index
Matrix< Scalar, Dynamic, 1 > Vector
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
SparseMatrix< Scalar, RowMajor > FactorType
void rhs(const real_t *x, real_t *f)
Matrix< Scalar, Dynamic, Dynamic > MatrixType
void factorize(const MatrixType &amat)
void _solve(const Rhs &b, Dest &x) const
#define EIGEN_MAKE_SOLVE_HELPERS(DecompositionType, Rhs)
Base class for all dense matrices, vectors, and expressions.
NumTraits< Scalar >::Real RealScalar