Classes | Namespaces | Macros | Functions | Variables
AutoDiffScalar.h File Reference

Go to the source code of this file.

Classes

struct  Eigen::internal::auto_diff_special_op< _DerType, Enable >
 
struct  Eigen::internal::auto_diff_special_op< _DerType, false >
 
struct  Eigen::internal::auto_diff_special_op< _DerType, true >
 
class  Eigen::AutoDiffScalar< _DerType >
 A scalar type replacement with automatic differentation capability. More...
 
struct  Eigen::internal::make_coherent_impl< A, B >
 
struct  Eigen::internal::make_coherent_impl< A, Matrix< B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols > >
 
struct  Eigen::internal::make_coherent_impl< Matrix< A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols >, B >
 
struct  Eigen::internal::make_coherent_impl< Matrix< A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols >, Matrix< B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols > >
 
struct  Eigen::internal::scalar_product_traits< A_Scalar, Matrix< A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols > >
 
struct  Eigen::internal::scalar_product_traits< AutoDiffScalar< DerType >, typename DerType::Scalar >
 
struct  Eigen::internal::scalar_product_traits< Matrix< A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols >, A_Scalar >
 
struct  Eigen::internal::scalar_product_traits< typename DerType::Scalar, AutoDiffScalar< DerType > >
 

Namespaces

 Eigen
 iterative scaling algorithm to equilibrate rows and column norms in matrices
 
 Eigen::internal
 

Macros

#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC, CODE)
 

Functions

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar< Matrix< typename internal::traits< DerTypeA >::Scalar, Dynamic, 1 > > Eigen::atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
 
template<typename DerType , typename T >
 Eigen::AutoDiffScalar< DerType > (min)(const AutoDiffScalar< DerType > &x
 
template<typename DerType , typename T >
 Eigen::AutoDiffScalar< DerType > (max)(const AutoDiffScalar< DerType > &x
 
template<typename DerType >
const AutoDiffScalar< DerType > & Eigen::conj (const AutoDiffScalar< DerType > &x)
 
 Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return ReturnType(abs(x.value()), x.derivatives()*(x.value()< 0?-1:1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2
 
 Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return ReturnType(sqrtx, x.derivatives()*(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos
 
 Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return ReturnType(sin(x.value()), x.derivatives()*cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp
 
 Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return ReturnType(log(x.value()), x.derivatives()*(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen
 
 Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return ReturnType(tan(x.value()), x.derivatives()*(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin
 
 Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return ReturnType(acos(x.value()), x.derivatives()*(Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) template< typename DerType > struct NumTraits< AutoDiffScalar< DerType > >
 
template<typename DerType >
DerType::Scalar Eigen::imag (const AutoDiffScalar< DerType > &)
 
template<typename A , typename B >
void Eigen::internal::make_coherent (const A &a, const B &b)
 
template<typename DerType >
const AutoDiffScalar< DerType > & Eigen::real (const AutoDiffScalar< DerType > &x)
 
return Eigen::ReturnType (abs2(x.value()), x.derivatives()*(Scalar(2)*x.value()))
 
return Eigen::ReturnType (cos(x.value()), x.derivatives()*(-sin(x.value())))
 
return Eigen::ReturnType (expx, x.derivatives()*expx)
 
return Eigen::ReturnType (asin(x.value()), x.derivatives()*(Scalar(1)/sqrt(1-numext::abs2(x.value()))))
 

Variables

Scalar Eigen::expx = exp(x.value())
 
const TEigen::y { return (x <= y ? x : y)
 

Macro Definition Documentation

#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (   FUNC,
  CODE 
)
Value:
template<typename DerType> \
FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
using namespace Eigen; \
CODE; \
}
A scalar type replacement with automatic differentation capability.
#define inline
Definition: Types.h:109
return ReturnType(asin(x.value()), x.derivatives()*(Scalar(1)/sqrt(1-numext::abs2(x.value()))))
iterative scaling algorithm to equilibrate rows and column norms in matrices
Definition: matrix.hpp:471

Definition at line 522 of file AutoDiffScalar.h.



acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:35:17