00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_JACOBISVD_H
00011 #define EIGEN_JACOBISVD_H
00012
00013 namespace Eigen {
00014
00015 namespace internal {
00016
00017
00018 template<typename MatrixType, int QRPreconditioner,
00019 bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
00020 struct svd_precondition_2x2_block_to_be_real {};
00021
00022
00023
00024
00025
00026
00027
00028
00029 enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
00030
00031 template<typename MatrixType, int QRPreconditioner, int Case>
00032 struct qr_preconditioner_should_do_anything
00033 {
00034 enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
00035 MatrixType::ColsAtCompileTime != Dynamic &&
00036 MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
00037 b = MatrixType::RowsAtCompileTime != Dynamic &&
00038 MatrixType::ColsAtCompileTime != Dynamic &&
00039 MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
00040 ret = !( (QRPreconditioner == NoQRPreconditioner) ||
00041 (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
00042 (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
00043 };
00044 };
00045
00046 template<typename MatrixType, int QRPreconditioner, int Case,
00047 bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
00048 > struct qr_preconditioner_impl {};
00049
00050 template<typename MatrixType, int QRPreconditioner, int Case>
00051 class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
00052 {
00053 public:
00054 typedef typename MatrixType::Index Index;
00055 void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
00056 bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
00057 {
00058 return false;
00059 }
00060 };
00061
00062
00063
00064 template<typename MatrixType>
00065 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
00066 {
00067 public:
00068 typedef typename MatrixType::Index Index;
00069 typedef typename MatrixType::Scalar Scalar;
00070 enum
00071 {
00072 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00073 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
00074 };
00075 typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
00076
00077 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
00078 {
00079 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
00080 {
00081 m_qr.~QRType();
00082 ::new (&m_qr) QRType(svd.rows(), svd.cols());
00083 }
00084 if (svd.m_computeFullU) m_workspace.resize(svd.rows());
00085 }
00086
00087 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00088 {
00089 if(matrix.rows() > matrix.cols())
00090 {
00091 m_qr.compute(matrix);
00092 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
00093 if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
00094 if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
00095 return true;
00096 }
00097 return false;
00098 }
00099 private:
00100 typedef FullPivHouseholderQR<MatrixType> QRType;
00101 QRType m_qr;
00102 WorkspaceType m_workspace;
00103 };
00104
00105 template<typename MatrixType>
00106 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
00107 {
00108 public:
00109 typedef typename MatrixType::Index Index;
00110 typedef typename MatrixType::Scalar Scalar;
00111 enum
00112 {
00113 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00114 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00115 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00116 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
00117 Options = MatrixType::Options
00118 };
00119 typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
00120 TransposeTypeWithSameStorageOrder;
00121
00122 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
00123 {
00124 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
00125 {
00126 m_qr.~QRType();
00127 ::new (&m_qr) QRType(svd.cols(), svd.rows());
00128 }
00129 m_adjoint.resize(svd.cols(), svd.rows());
00130 if (svd.m_computeFullV) m_workspace.resize(svd.cols());
00131 }
00132
00133 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00134 {
00135 if(matrix.cols() > matrix.rows())
00136 {
00137 m_adjoint = matrix.adjoint();
00138 m_qr.compute(m_adjoint);
00139 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
00140 if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
00141 if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
00142 return true;
00143 }
00144 else return false;
00145 }
00146 private:
00147 typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
00148 QRType m_qr;
00149 TransposeTypeWithSameStorageOrder m_adjoint;
00150 typename internal::plain_row_type<MatrixType>::type m_workspace;
00151 };
00152
00153
00154
00155 template<typename MatrixType>
00156 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
00157 {
00158 public:
00159 typedef typename MatrixType::Index Index;
00160
00161 void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
00162 {
00163 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
00164 {
00165 m_qr.~QRType();
00166 ::new (&m_qr) QRType(svd.rows(), svd.cols());
00167 }
00168 if (svd.m_computeFullU) m_workspace.resize(svd.rows());
00169 else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
00170 }
00171
00172 bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00173 {
00174 if(matrix.rows() > matrix.cols())
00175 {
00176 m_qr.compute(matrix);
00177 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
00178 if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
00179 else if(svd.m_computeThinU)
00180 {
00181 svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
00182 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
00183 }
00184 if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
00185 return true;
00186 }
00187 return false;
00188 }
00189
00190 private:
00191 typedef ColPivHouseholderQR<MatrixType> QRType;
00192 QRType m_qr;
00193 typename internal::plain_col_type<MatrixType>::type m_workspace;
00194 };
00195
00196 template<typename MatrixType>
00197 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
00198 {
00199 public:
00200 typedef typename MatrixType::Index Index;
00201 typedef typename MatrixType::Scalar Scalar;
00202 enum
00203 {
00204 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00205 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00206 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00207 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
00208 Options = MatrixType::Options
00209 };
00210
00211 typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
00212 TransposeTypeWithSameStorageOrder;
00213
00214 void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
00215 {
00216 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
00217 {
00218 m_qr.~QRType();
00219 ::new (&m_qr) QRType(svd.cols(), svd.rows());
00220 }
00221 if (svd.m_computeFullV) m_workspace.resize(svd.cols());
00222 else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
00223 m_adjoint.resize(svd.cols(), svd.rows());
00224 }
00225
00226 bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00227 {
00228 if(matrix.cols() > matrix.rows())
00229 {
00230 m_adjoint = matrix.adjoint();
00231 m_qr.compute(m_adjoint);
00232
00233 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
00234 if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
00235 else if(svd.m_computeThinV)
00236 {
00237 svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
00238 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
00239 }
00240 if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
00241 return true;
00242 }
00243 else return false;
00244 }
00245
00246 private:
00247 typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
00248 QRType m_qr;
00249 TransposeTypeWithSameStorageOrder m_adjoint;
00250 typename internal::plain_row_type<MatrixType>::type m_workspace;
00251 };
00252
00253
00254
00255 template<typename MatrixType>
00256 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
00257 {
00258 public:
00259 typedef typename MatrixType::Index Index;
00260
00261 void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
00262 {
00263 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
00264 {
00265 m_qr.~QRType();
00266 ::new (&m_qr) QRType(svd.rows(), svd.cols());
00267 }
00268 if (svd.m_computeFullU) m_workspace.resize(svd.rows());
00269 else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
00270 }
00271
00272 bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00273 {
00274 if(matrix.rows() > matrix.cols())
00275 {
00276 m_qr.compute(matrix);
00277 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
00278 if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
00279 else if(svd.m_computeThinU)
00280 {
00281 svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
00282 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
00283 }
00284 if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
00285 return true;
00286 }
00287 return false;
00288 }
00289 private:
00290 typedef HouseholderQR<MatrixType> QRType;
00291 QRType m_qr;
00292 typename internal::plain_col_type<MatrixType>::type m_workspace;
00293 };
00294
00295 template<typename MatrixType>
00296 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
00297 {
00298 public:
00299 typedef typename MatrixType::Index Index;
00300 typedef typename MatrixType::Scalar Scalar;
00301 enum
00302 {
00303 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00304 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00305 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00306 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
00307 Options = MatrixType::Options
00308 };
00309
00310 typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
00311 TransposeTypeWithSameStorageOrder;
00312
00313 void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
00314 {
00315 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
00316 {
00317 m_qr.~QRType();
00318 ::new (&m_qr) QRType(svd.cols(), svd.rows());
00319 }
00320 if (svd.m_computeFullV) m_workspace.resize(svd.cols());
00321 else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
00322 m_adjoint.resize(svd.cols(), svd.rows());
00323 }
00324
00325 bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
00326 {
00327 if(matrix.cols() > matrix.rows())
00328 {
00329 m_adjoint = matrix.adjoint();
00330 m_qr.compute(m_adjoint);
00331
00332 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
00333 if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
00334 else if(svd.m_computeThinV)
00335 {
00336 svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
00337 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
00338 }
00339 if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
00340 return true;
00341 }
00342 else return false;
00343 }
00344
00345 private:
00346 typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
00347 QRType m_qr;
00348 TransposeTypeWithSameStorageOrder m_adjoint;
00349 typename internal::plain_row_type<MatrixType>::type m_workspace;
00350 };
00351
00352
00353
00354
00355
00356
00357 template<typename MatrixType, int QRPreconditioner>
00358 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
00359 {
00360 typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
00361 typedef typename SVD::Index Index;
00362 static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
00363 };
00364
00365 template<typename MatrixType, int QRPreconditioner>
00366 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
00367 {
00368 typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
00369 typedef typename MatrixType::Scalar Scalar;
00370 typedef typename MatrixType::RealScalar RealScalar;
00371 typedef typename SVD::Index Index;
00372 static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
00373 {
00374 using std::sqrt;
00375 Scalar z;
00376 JacobiRotation<Scalar> rot;
00377 RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
00378
00379 if(n==0)
00380 {
00381 z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
00382 work_matrix.row(p) *= z;
00383 if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
00384 if(work_matrix.coeff(q,q)!=Scalar(0))
00385 {
00386 z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
00387 work_matrix.row(q) *= z;
00388 if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
00389 }
00390
00391 }
00392 else
00393 {
00394 rot.c() = conj(work_matrix.coeff(p,p)) / n;
00395 rot.s() = work_matrix.coeff(q,p) / n;
00396 work_matrix.applyOnTheLeft(p,q,rot);
00397 if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
00398 if(work_matrix.coeff(p,q) != Scalar(0))
00399 {
00400 Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
00401 work_matrix.col(q) *= z;
00402 if(svd.computeV()) svd.m_matrixV.col(q) *= z;
00403 }
00404 if(work_matrix.coeff(q,q) != Scalar(0))
00405 {
00406 z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
00407 work_matrix.row(q) *= z;
00408 if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
00409 }
00410 }
00411 }
00412 };
00413
00414 template<typename MatrixType, typename RealScalar, typename Index>
00415 void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
00416 JacobiRotation<RealScalar> *j_left,
00417 JacobiRotation<RealScalar> *j_right)
00418 {
00419 using std::sqrt;
00420 using std::abs;
00421 Matrix<RealScalar,2,2> m;
00422 m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
00423 numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
00424 JacobiRotation<RealScalar> rot1;
00425 RealScalar t = m.coeff(0,0) + m.coeff(1,1);
00426 RealScalar d = m.coeff(1,0) - m.coeff(0,1);
00427 if(t == RealScalar(0))
00428 {
00429 rot1.c() = RealScalar(0);
00430 rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
00431 }
00432 else
00433 {
00434 RealScalar t2d2 = numext::hypot(t,d);
00435 rot1.c() = abs(t)/t2d2;
00436 rot1.s() = d/t2d2;
00437 if(t<RealScalar(0))
00438 rot1.s() = -rot1.s();
00439 }
00440 m.applyOnTheLeft(0,1,rot1);
00441 j_right->makeJacobi(m,0,1);
00442 *j_left = rot1 * j_right->transpose();
00443 }
00444
00445 }
00446
00500 template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
00501 {
00502 public:
00503
00504 typedef _MatrixType MatrixType;
00505 typedef typename MatrixType::Scalar Scalar;
00506 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00507 typedef typename MatrixType::Index Index;
00508 enum {
00509 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00510 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00511 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
00512 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00513 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
00514 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
00515 MatrixOptions = MatrixType::Options
00516 };
00517
00518 typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
00519 MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
00520 MatrixUType;
00521 typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
00522 MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
00523 MatrixVType;
00524 typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
00525 typedef typename internal::plain_row_type<MatrixType>::type RowType;
00526 typedef typename internal::plain_col_type<MatrixType>::type ColType;
00527 typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
00528 MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
00529 WorkMatrixType;
00530
00536 JacobiSVD()
00537 : m_isInitialized(false),
00538 m_isAllocated(false),
00539 m_usePrescribedThreshold(false),
00540 m_computationOptions(0),
00541 m_rows(-1), m_cols(-1), m_diagSize(0)
00542 {}
00543
00544
00551 JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
00552 : m_isInitialized(false),
00553 m_isAllocated(false),
00554 m_usePrescribedThreshold(false),
00555 m_computationOptions(0),
00556 m_rows(-1), m_cols(-1)
00557 {
00558 allocate(rows, cols, computationOptions);
00559 }
00560
00571 JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
00572 : m_isInitialized(false),
00573 m_isAllocated(false),
00574 m_usePrescribedThreshold(false),
00575 m_computationOptions(0),
00576 m_rows(-1), m_cols(-1)
00577 {
00578 compute(matrix, computationOptions);
00579 }
00580
00591 JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
00592
00599 JacobiSVD& compute(const MatrixType& matrix)
00600 {
00601 return compute(matrix, m_computationOptions);
00602 }
00603
00613 const MatrixUType& matrixU() const
00614 {
00615 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00616 eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
00617 return m_matrixU;
00618 }
00619
00629 const MatrixVType& matrixV() const
00630 {
00631 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00632 eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
00633 return m_matrixV;
00634 }
00635
00641 const SingularValuesType& singularValues() const
00642 {
00643 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00644 return m_singularValues;
00645 }
00646
00648 inline bool computeU() const { return m_computeFullU || m_computeThinU; }
00650 inline bool computeV() const { return m_computeFullV || m_computeThinV; }
00651
00661 template<typename Rhs>
00662 inline const internal::solve_retval<JacobiSVD, Rhs>
00663 solve(const MatrixBase<Rhs>& b) const
00664 {
00665 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00666 eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
00667 return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
00668 }
00669
00671 Index nonzeroSingularValues() const
00672 {
00673 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00674 return m_nonzeroSingularValues;
00675 }
00676
00683 inline Index rank() const
00684 {
00685 using std::abs;
00686 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
00687 if(m_singularValues.size()==0) return 0;
00688 RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
00689 Index i = m_nonzeroSingularValues-1;
00690 while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
00691 return i+1;
00692 }
00693
00708 JacobiSVD& setThreshold(const RealScalar& threshold)
00709 {
00710 m_usePrescribedThreshold = true;
00711 m_prescribedThreshold = threshold;
00712 return *this;
00713 }
00714
00723 JacobiSVD& setThreshold(Default_t)
00724 {
00725 m_usePrescribedThreshold = false;
00726 return *this;
00727 }
00728
00733 RealScalar threshold() const
00734 {
00735 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
00736 return m_usePrescribedThreshold ? m_prescribedThreshold
00737 : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
00738 }
00739
00740 inline Index rows() const { return m_rows; }
00741 inline Index cols() const { return m_cols; }
00742
00743 private:
00744 void allocate(Index rows, Index cols, unsigned int computationOptions);
00745
00746 static void check_template_parameters()
00747 {
00748 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
00749 }
00750
00751 protected:
00752 MatrixUType m_matrixU;
00753 MatrixVType m_matrixV;
00754 SingularValuesType m_singularValues;
00755 WorkMatrixType m_workMatrix;
00756 bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
00757 bool m_computeFullU, m_computeThinU;
00758 bool m_computeFullV, m_computeThinV;
00759 unsigned int m_computationOptions;
00760 Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
00761 RealScalar m_prescribedThreshold;
00762
00763 template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
00764 friend struct internal::svd_precondition_2x2_block_to_be_real;
00765 template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
00766 friend struct internal::qr_preconditioner_impl;
00767
00768 internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
00769 internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
00770 MatrixType m_scaledMatrix;
00771 };
00772
00773 template<typename MatrixType, int QRPreconditioner>
00774 void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
00775 {
00776 eigen_assert(rows >= 0 && cols >= 0);
00777
00778 if (m_isAllocated &&
00779 rows == m_rows &&
00780 cols == m_cols &&
00781 computationOptions == m_computationOptions)
00782 {
00783 return;
00784 }
00785
00786 m_rows = rows;
00787 m_cols = cols;
00788 m_isInitialized = false;
00789 m_isAllocated = true;
00790 m_computationOptions = computationOptions;
00791 m_computeFullU = (computationOptions & ComputeFullU) != 0;
00792 m_computeThinU = (computationOptions & ComputeThinU) != 0;
00793 m_computeFullV = (computationOptions & ComputeFullV) != 0;
00794 m_computeThinV = (computationOptions & ComputeThinV) != 0;
00795 eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
00796 eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
00797 eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
00798 "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
00799 if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
00800 {
00801 eigen_assert(!(m_computeThinU || m_computeThinV) &&
00802 "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
00803 "Use the ColPivHouseholderQR preconditioner instead.");
00804 }
00805 m_diagSize = (std::min)(m_rows, m_cols);
00806 m_singularValues.resize(m_diagSize);
00807 if(RowsAtCompileTime==Dynamic)
00808 m_matrixU.resize(m_rows, m_computeFullU ? m_rows
00809 : m_computeThinU ? m_diagSize
00810 : 0);
00811 if(ColsAtCompileTime==Dynamic)
00812 m_matrixV.resize(m_cols, m_computeFullV ? m_cols
00813 : m_computeThinV ? m_diagSize
00814 : 0);
00815 m_workMatrix.resize(m_diagSize, m_diagSize);
00816
00817 if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
00818 if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
00819 if(m_cols!=m_cols) m_scaledMatrix.resize(rows,cols);
00820 }
00821
00822 template<typename MatrixType, int QRPreconditioner>
00823 JacobiSVD<MatrixType, QRPreconditioner>&
00824 JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
00825 {
00826 check_template_parameters();
00827
00828 using std::abs;
00829 allocate(matrix.rows(), matrix.cols(), computationOptions);
00830
00831
00832
00833 const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
00834
00835
00836 const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
00837
00838
00839 RealScalar scale = matrix.cwiseAbs().maxCoeff();
00840 if(scale==RealScalar(0)) scale = RealScalar(1);
00841
00842
00843
00844 if(m_rows!=m_cols)
00845 {
00846 m_scaledMatrix = matrix / scale;
00847 m_qr_precond_morecols.run(*this, m_scaledMatrix);
00848 m_qr_precond_morerows.run(*this, m_scaledMatrix);
00849 }
00850 else
00851 {
00852 m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
00853 if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
00854 if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
00855 if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
00856 if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
00857 }
00858
00859
00860
00861 bool finished = false;
00862 while(!finished)
00863 {
00864 finished = true;
00865
00866
00867
00868 for(Index p = 1; p < m_diagSize; ++p)
00869 {
00870 for(Index q = 0; q < p; ++q)
00871 {
00872
00873
00874
00875 using std::max;
00876 RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
00877 abs(m_workMatrix.coeff(q,q))));
00878
00879 if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
00880 {
00881 finished = false;
00882
00883
00884 internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
00885 JacobiRotation<RealScalar> j_left, j_right;
00886 internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
00887
00888
00889 m_workMatrix.applyOnTheLeft(p,q,j_left);
00890 if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
00891
00892 m_workMatrix.applyOnTheRight(p,q,j_right);
00893 if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
00894 }
00895 }
00896 }
00897 }
00898
00899
00900
00901 for(Index i = 0; i < m_diagSize; ++i)
00902 {
00903 RealScalar a = abs(m_workMatrix.coeff(i,i));
00904 m_singularValues.coeffRef(i) = a;
00905 if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
00906 }
00907
00908
00909
00910 m_nonzeroSingularValues = m_diagSize;
00911 for(Index i = 0; i < m_diagSize; i++)
00912 {
00913 Index pos;
00914 RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
00915 if(maxRemainingSingularValue == RealScalar(0))
00916 {
00917 m_nonzeroSingularValues = i;
00918 break;
00919 }
00920 if(pos)
00921 {
00922 pos += i;
00923 std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
00924 if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
00925 if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
00926 }
00927 }
00928
00929 m_singularValues *= scale;
00930
00931 m_isInitialized = true;
00932 return *this;
00933 }
00934
00935 namespace internal {
00936 template<typename _MatrixType, int QRPreconditioner, typename Rhs>
00937 struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
00938 : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
00939 {
00940 typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
00941 EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
00942
00943 template<typename Dest> void evalTo(Dest& dst) const
00944 {
00945 eigen_assert(rhs().rows() == dec().rows());
00946
00947
00948
00949
00950 Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
00951 Index rank = dec().rank();
00952
00953 tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
00954 tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
00955 dst = dec().matrixV().leftCols(rank) * tmp;
00956 }
00957 };
00958 }
00959
00967 template<typename Derived>
00968 JacobiSVD<typename MatrixBase<Derived>::PlainObject>
00969 MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
00970 {
00971 return JacobiSVD<PlainObject>(*this, computationOptions);
00972 }
00973
00974 }
00975
00976 #endif // EIGEN_JACOBISVD_H