Public Types | Public Member Functions | Protected Attributes | Private Member Functions | Static Private Member Functions | Friends
Eigen::JacobiSVD< _MatrixType, QRPreconditioner > Class Template Reference

Two-sided Jacobi SVD decomposition of a rectangular matrix. More...

#include <JacobiSVD.h>

List of all members.

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options
}
typedef
internal::plain_col_type
< MatrixType >::type 
ColType
typedef MatrixType::Index Index
typedef _MatrixType MatrixType
typedef Matrix< Scalar,
RowsAtCompileTime,
RowsAtCompileTime,
MatrixOptions,
MaxRowsAtCompileTime,
MaxRowsAtCompileTime
MatrixUType
typedef Matrix< Scalar,
ColsAtCompileTime,
ColsAtCompileTime,
MatrixOptions,
MaxColsAtCompileTime,
MaxColsAtCompileTime
MatrixVType
typedef NumTraits< typename
MatrixType::Scalar >::Real 
RealScalar
typedef
internal::plain_row_type
< MatrixType >::type 
RowType
typedef MatrixType::Scalar Scalar
typedef
internal::plain_diag_type
< MatrixType, RealScalar >
::type 
SingularValuesType
typedef Matrix< Scalar,
DiagSizeAtCompileTime,
DiagSizeAtCompileTime,
MatrixOptions,
MaxDiagSizeAtCompileTime,
MaxDiagSizeAtCompileTime
WorkMatrixType

Public Member Functions

Index cols () const
JacobiSVDcompute (const MatrixType &matrix, unsigned int computationOptions)
 Method performing the decomposition of given matrix using custom options.
JacobiSVDcompute (const MatrixType &matrix)
 Method performing the decomposition of given matrix using current options.
bool computeU () const
bool computeV () const
 JacobiSVD ()
 Default Constructor.
 JacobiSVD (Index rows, Index cols, unsigned int computationOptions=0)
 Default Constructor with memory preallocation.
 JacobiSVD (const MatrixType &matrix, unsigned int computationOptions=0)
 Constructor performing the decomposition of given matrix.
const MatrixUTypematrixU () const
const MatrixVTypematrixV () const
Index nonzeroSingularValues () const
Index rank () const
Index rows () const
JacobiSVDsetThreshold (const RealScalar &threshold)
JacobiSVDsetThreshold (Default_t)
const SingularValuesTypesingularValues () const
template<typename Rhs >
const internal::solve_retval
< JacobiSVD, Rhs > 
solve (const MatrixBase< Rhs > &b) const
RealScalar threshold () const

Protected Attributes

Index m_cols
unsigned int m_computationOptions
bool m_computeFullU
bool m_computeFullV
bool m_computeThinU
bool m_computeThinV
Index m_diagSize
bool m_isAllocated
bool m_isInitialized
MatrixUType m_matrixU
MatrixVType m_matrixV
Index m_nonzeroSingularValues
RealScalar m_prescribedThreshold
internal::qr_preconditioner_impl
< MatrixType, QRPreconditioner,
internal::PreconditionIfMoreColsThanRows
m_qr_precond_morecols
internal::qr_preconditioner_impl
< MatrixType, QRPreconditioner,
internal::PreconditionIfMoreRowsThanCols
m_qr_precond_morerows
Index m_rows
MatrixType m_scaledMatrix
SingularValuesType m_singularValues
bool m_usePrescribedThreshold
WorkMatrixType m_workMatrix

Private Member Functions

void allocate (Index rows, Index cols, unsigned int computationOptions)

Static Private Member Functions

static void check_template_parameters ()

Friends

struct internal::qr_preconditioner_impl
struct internal::svd_precondition_2x2_block_to_be_real

Detailed Description

template<typename _MatrixType, int QRPreconditioner>
class Eigen::JacobiSVD< _MatrixType, QRPreconditioner >

Two-sided Jacobi SVD decomposition of a rectangular matrix.

Parameters:
MatrixTypethe type of the matrix of which we are computing the SVD decomposition
QRPreconditionerthis optional parameter allows to specify the type of QR decomposition that will be used internally for the R-SVD step for non-square matrices. See discussion of possible values below.

SVD decomposition consists in decomposing any n-by-p matrix A as a product

\[ A = U S V^* \]

where U is a n-by-n unitary, V is a p-by-p unitary, and S is a n-by-p real positive matrix which is zero outside of its main diagonal; the diagonal entries of S are known as the singular values of A and the columns of U and V are known as the left and right singular vectors of A respectively.

Singular values are always sorted in decreasing order.

This JacobiSVD decomposition computes only the singular values by default. If you want U or V, you need to ask for them explicitly.

You can ask for only thin U or V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting m be the smaller value among n and p, there are only m singular vectors; the remaining columns of U and V do not correspond to actual singular vectors. Asking for thin U or V means asking for only their m first columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that thin U and V are all you need for (least squares) solving.

Here's an example demonstrating basic usage:

Output:

This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is still $ O(n^2p) $ where n is the smaller dimension and p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.

If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time.

The possible values for QRPreconditioner are:

See also:
MatrixBase::jacobiSvd()

Definition at line 500 of file JacobiSVD.h.


Member Typedef Documentation

template<typename _MatrixType, int QRPreconditioner>
typedef internal::plain_col_type<MatrixType>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::ColType

Definition at line 526 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef MatrixType::Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::Index

Definition at line 507 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef _MatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixType

Definition at line 504 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixUType

Definition at line 520 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::MatrixVType

Definition at line 523 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef NumTraits<typename MatrixType::Scalar>::Real Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::RealScalar

Definition at line 506 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef internal::plain_row_type<MatrixType>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::RowType

Definition at line 525 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef MatrixType::Scalar Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::Scalar

Definition at line 505 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef internal::plain_diag_type<MatrixType, RealScalar>::type Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::SingularValuesType

Definition at line 524 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::WorkMatrixType

Definition at line 529 of file JacobiSVD.h.


Member Enumeration Documentation

template<typename _MatrixType, int QRPreconditioner>
anonymous enum
Enumerator:
RowsAtCompileTime 
ColsAtCompileTime 
DiagSizeAtCompileTime 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 
MaxDiagSizeAtCompileTime 
MatrixOptions 

Definition at line 508 of file JacobiSVD.h.


Constructor & Destructor Documentation

template<typename _MatrixType, int QRPreconditioner>
Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::JacobiSVD ( ) [inline]

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via JacobiSVD::compute(const MatrixType&).

Definition at line 536 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::JacobiSVD ( Index  rows,
Index  cols,
unsigned int  computationOptions = 0 
) [inline]

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also:
JacobiSVD()

Definition at line 551 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::JacobiSVD ( const MatrixType matrix,
unsigned int  computationOptions = 0 
) [inline]

Constructor performing the decomposition of given matrix.

Parameters:
matrixthe matrix to decompose
computationOptionsoptional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV.

Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.

Definition at line 571 of file JacobiSVD.h.


Member Function Documentation

template<typename MatrixType , int QRPreconditioner>
void Eigen::JacobiSVD< MatrixType, QRPreconditioner >::allocate ( Index  rows,
Index  cols,
unsigned int  computationOptions 
) [private]

Definition at line 774 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
static void Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::check_template_parameters ( ) [inline, static, private]

Definition at line 746 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::cols ( void  ) const [inline]

Definition at line 741 of file JacobiSVD.h.

template<typename MatrixType , int QRPreconditioner>
JacobiSVD< MatrixType, QRPreconditioner > & Eigen::JacobiSVD< MatrixType, QRPreconditioner >::compute ( const MatrixType matrix,
unsigned int  computationOptions 
)

Method performing the decomposition of given matrix using custom options.

Parameters:
matrixthe matrix to decompose
computationOptionsoptional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV.

Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.

Definition at line 824 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
JacobiSVD& Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::compute ( const MatrixType matrix) [inline]

Method performing the decomposition of given matrix using current options.

Parameters:
matrixthe matrix to decompose

This method uses the current computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).

Definition at line 599 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::computeU ( ) const [inline]
Returns:
true if U (full or thin) is asked for in this SVD decomposition

Definition at line 648 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::computeV ( ) const [inline]
Returns:
true if V (full or thin) is asked for in this SVD decomposition

Definition at line 650 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
const MatrixUType& Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::matrixU ( ) const [inline]
Returns:
the U matrix.

For the SVD decomposition of a n-by-p matrix, letting m be the minimum of n and p, the U matrix is n-by-n if you asked for ComputeFullU, and is n-by-m if you asked for ComputeThinU.

The m first columns of U are the left singular vectors of the matrix being decomposed.

This method asserts that you asked for U to be computed.

Definition at line 613 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
const MatrixVType& Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::matrixV ( ) const [inline]
Returns:
the V matrix.

For the SVD decomposition of a n-by-p matrix, letting m be the minimum of n and p, the V matrix is p-by-p if you asked for ComputeFullV, and is p-by-m if you asked for ComputeThinV.

The m first columns of V are the right singular vectors of the matrix being decomposed.

This method asserts that you asked for V to be computed.

Definition at line 629 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::nonzeroSingularValues ( ) const [inline]
Returns:
the number of singular values that are not exactly 0

Definition at line 671 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::rank ( ) const [inline]
Returns:
the rank of the matrix of which *this is the SVD.
Note:
This method has to determine which singular values should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 683 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::rows ( void  ) const [inline]

Definition at line 740 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
JacobiSVD& Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::setThreshold ( const RealScalar threshold) [inline]

Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), which need to determine when singular values are to be considered nonzero. This is not used for the SVD decomposition itself.

When it needs to get the threshold value, Eigen calls threshold(). The default is NumTraits<Scalar>::epsilon()

Parameters:
thresholdThe new value to use as the threshold.

A singular value will be considered nonzero if its value is strictly greater than $ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert $.

If you want to come back to the default behavior, call setThreshold(Default_t)

Definition at line 708 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
JacobiSVD& Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::setThreshold ( Default_t  ) [inline]

Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.

You should pass the special object Eigen::Default as parameter here.

 svd.setThreshold(Eigen::Default); 

See the documentation of setThreshold(const RealScalar&).

Definition at line 723 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
const SingularValuesType& Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::singularValues ( ) const [inline]
Returns:
the vector of singular values.

For the SVD decomposition of a n-by-p matrix, letting m be the minimum of n and p, the returned vector has size m. Singular values are always sorted in decreasing order.

Definition at line 641 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
template<typename Rhs >
const internal::solve_retval<JacobiSVD, Rhs> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::solve ( const MatrixBase< Rhs > &  b) const [inline]
Returns:
a (least squares) solution of $ A x = b $ using the current SVD decomposition of A.
Parameters:
bthe right-hand-side of the equation to solve.
Note:
Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. In other words, the returned solution is guaranteed to minimize the Euclidean norm $ \Vert A x - b \Vert $.

Definition at line 663 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
RealScalar Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::threshold ( ) const [inline]

Returns the threshold that will be used by certain methods such as rank().

See the documentation of setThreshold(const RealScalar&).

Definition at line 733 of file JacobiSVD.h.


Friends And Related Function Documentation

template<typename _MatrixType, int QRPreconditioner>
friend struct internal::qr_preconditioner_impl [friend]

Definition at line 766 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
friend struct internal::svd_precondition_2x2_block_to_be_real [friend]

Definition at line 764 of file JacobiSVD.h.


Member Data Documentation

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_cols [protected]

Definition at line 760 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
unsigned int Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_computationOptions [protected]

Definition at line 759 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_computeFullU [protected]

Definition at line 757 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_computeFullV [protected]

Definition at line 758 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_computeThinU [protected]

Definition at line 757 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_computeThinV [protected]

Definition at line 758 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_diagSize [protected]

Definition at line 760 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_isAllocated [protected]

Definition at line 756 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_isInitialized [protected]

Definition at line 756 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
MatrixUType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_matrixU [protected]

Definition at line 752 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
MatrixVType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_matrixV [protected]

Definition at line 753 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_nonzeroSingularValues [protected]

Definition at line 760 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
RealScalar Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_prescribedThreshold [protected]

Definition at line 761 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_qr_precond_morecols [protected]

Definition at line 768 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_qr_precond_morerows [protected]

Definition at line 769 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
Index Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_rows [protected]

Definition at line 760 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
MatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_scaledMatrix [protected]

Definition at line 770 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
SingularValuesType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_singularValues [protected]

Definition at line 754 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
bool Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_usePrescribedThreshold [protected]

Definition at line 756 of file JacobiSVD.h.

template<typename _MatrixType, int QRPreconditioner>
WorkMatrixType Eigen::JacobiSVD< _MatrixType, QRPreconditioner >::m_workMatrix [protected]

Definition at line 755 of file JacobiSVD.h.


The documentation for this class was generated from the following file:


turtlebot_exploration_3d
Author(s): Bona , Shawn
autogenerated on Thu Jun 6 2019 21:00:51