uniform_sampling.cpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2012-, Open Perception, Inc.
00006  *  
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of the copyright holder(s) nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  */
00037 
00038 #include <pcl/PCLPointCloud2.h>
00039 #include <pcl/io/pcd_io.h>
00040 #include <pcl/keypoints/uniform_sampling.h>
00041 #include <pcl/console/print.h>
00042 #include <pcl/console/parse.h>
00043 #include <pcl/console/time.h>
00044 
00045 using namespace std;
00046 using namespace pcl;
00047 using namespace pcl::io;
00048 using namespace pcl::console;
00049 
00050 double default_radius = 0.01;
00051 
00052 Eigen::Vector4f    translation;
00053 Eigen::Quaternionf orientation;
00054 
00055 void
00056 printHelp (int, char **argv)
00057 {
00058   print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
00059   print_info ("  where options are:\n");
00060   print_info ("                     -radius X = use a leaf size of X,X,X to uniformly select 1 point per leaf (default: "); 
00061   print_value ("%f", default_radius); print_info (")\n");
00062 }
00063 
00064 bool
00065 loadCloud (const string &filename, pcl::PCLPointCloud2 &cloud)
00066 {
00067   TicToc tt;
00068   print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
00069 
00070   tt.tic ();
00071   if (loadPCDFile (filename, cloud, translation, orientation) < 0)
00072     return (false);
00073   print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
00074   print_info ("Available dimensions: "); print_value ("%s\n", getFieldsList (cloud).c_str ());
00075 
00076   return (true);
00077 }
00078 
00079 void
00080 compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
00081          double radius)
00082 {
00083   // Convert data to PointCloud<T>
00084   PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
00085   fromPCLPointCloud2 (*input, *xyz);
00086 
00087   // Estimate
00088   TicToc tt;
00089   tt.tic ();
00090   
00091   print_highlight (stderr, "Computing ");
00092 
00093   UniformSampling<PointXYZ> us;
00094   us.setInputCloud (xyz);
00095   us.setRadiusSearch (radius);
00096   PointCloud<int> subsampled_indices;
00097   us.compute (subsampled_indices);
00098   std::sort (subsampled_indices.points.begin (), subsampled_indices.points.end ());
00099 
00100   print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", subsampled_indices.width * subsampled_indices.height); print_info (" points]\n");
00101 
00102   // Convert data back
00103   copyPointCloud (*input, subsampled_indices.points, output);
00104 }
00105 
00106 void
00107 saveCloud (const string &filename, const pcl::PCLPointCloud2 &output)
00108 {
00109   TicToc tt;
00110   tt.tic ();
00111 
00112   print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
00113 
00114   PCDWriter w;
00115   w.writeBinaryCompressed (filename, output, translation, orientation);
00116   
00117   print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
00118 }
00119 
00120 /* ---[ */
00121 int
00122 main (int argc, char** argv)
00123 {
00124   print_info ("Uniform subsampling using UniformSampling. For more information, use: %s -h\n", argv[0]);
00125 
00126   if (argc < 3)
00127   {
00128     printHelp (argc, argv);
00129     return (-1);
00130   }
00131 
00132   // Parse the command line arguments for .pcd files
00133   vector<int> p_file_indices;
00134   p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
00135   if (p_file_indices.size () != 2)
00136   {
00137     print_error ("Need one input PCD file and one output PCD file to continue.\n");
00138     return (-1);
00139   }
00140 
00141   // Command line parsing
00142   double radius = default_radius;
00143   parse_argument (argc, argv, "-radius", radius);
00144   print_info ("Extracting uniform points with a leaf size of: "); 
00145   print_value ("%f\n", radius); 
00146 
00147   // Load the first file
00148   pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
00149   if (!loadCloud (argv[p_file_indices[0]], *cloud)) 
00150     return (-1);
00151 
00152   // Perform the keypoint estimation
00153   pcl::PCLPointCloud2 output;
00154   compute (cloud, output, radius);
00155 
00156   // Save into the second file
00157   saveCloud (argv[p_file_indices[1]], output);
00158 }
00159 


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:37:18