Classes | Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions
pcl::MovingLeastSquares< PointInT, PointOutT > Class Template Reference

MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm for data smoothing and improved normal estimation. It also contains methods for upsampling the resulting cloud based on the parametric fit. Reference paper: "Computing and Rendering Point Set Surfaces" by Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin and Claudio T. Silva www.sci.utah.edu/~shachar/Publications/crpss.pdf. More...

#include <mls.h>

Inheritance diagram for pcl::MovingLeastSquares< PointInT, PointOutT >:
Inheritance graph
[legend]

List of all members.

Classes

struct  MLSResult
 Data structure used to store the results of the MLS fitting. More...
class  MLSVoxelGrid
 A minimalistic implementation of a voxel grid, necessary for the point cloud upsampling. More...

Public Types

typedef pcl::search::Search
< PointInT > 
KdTree
typedef pcl::search::Search
< PointInT >::Ptr 
KdTreePtr
typedef pcl::PointCloud
< pcl::Normal
NormalCloud
typedef pcl::PointCloud
< pcl::Normal >::Ptr 
NormalCloudPtr
typedef pcl::PointCloud< PointInT > PointCloudIn
typedef PointCloudIn::ConstPtr PointCloudInConstPtr
typedef PointCloudIn::Ptr PointCloudInPtr
typedef pcl::PointCloud
< PointOutT > 
PointCloudOut
typedef PointCloudOut::ConstPtr PointCloudOutConstPtr
typedef PointCloudOut::Ptr PointCloudOutPtr
typedef boost::function< int(int,
double, std::vector< int >
&, std::vector< float > &)> 
SearchMethod
enum  UpsamplingMethod { NONE, SAMPLE_LOCAL_PLANE, RANDOM_UNIFORM_DENSITY, VOXEL_GRID_DILATION }

Public Member Functions

int getDilationIterations ()
 Get the number of dilation steps of the voxel grid.
float getDilationVoxelSize ()
 Get the voxel size for the voxel grid.
int getPointDensity ()
 Get the parameter that specifies the desired number of points within the search radius.
bool getPolynomialFit ()
 Get the polynomial_fit value (true if the surface and normal are approximated using a polynomial).
int getPolynomialOrder ()
 Get the order of the polynomial to be fit.
KdTreePtr getSearchMethod ()
 Get a pointer to the search method used.
double getSearchRadius ()
 Get the sphere radius used for determining the k-nearest neighbors.
double getSqrGaussParam () const
 Get the parameter for distance based weighting of neighbors.
double getUpsamplingRadius ()
 Get the radius of the circle in the local point plane that will be sampled.
double getUpsamplingStepSize ()
 Get the step size for the local plane sampling.
 MovingLeastSquares ()
 Empty constructor.
void process (PointCloudOut &output)
 Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()>
void setComputeNormals (bool compute_normals)
 Set whether the algorithm should also store the normals computed.
void setDilationIterations (int iterations)
 Set the number of dilation steps of the voxel grid.
void setDilationVoxelSize (float voxel_size)
 Set the voxel size for the voxel grid.
void setPointDensity (int desired_num_points_in_radius)
 Set the parameter that specifies the desired number of points within the search radius.
void setPolynomialFit (bool polynomial_fit)
 Sets whether the surface and normal are approximated using a polynomial, or only via tangent estimation.
void setPolynomialOrder (int order)
 Set the order of the polynomial to be fit.
void setSearchMethod (const KdTreePtr &tree)
 Provide a pointer to the search object.
void setSearchRadius (double radius)
 Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting.
void setSqrGaussParam (double sqr_gauss_param)
 Set the parameter used for distance based weighting of neighbors (the square of the search radius works best in general).
void setUpsamplingMethod (UpsamplingMethod method)
 Set the upsampling method to be used.
void setUpsamplingRadius (double radius)
 Set the radius of the circle in the local point plane that will be sampled.
void setUpsamplingStepSize (double step_size)
 Set the step size for the local plane sampling.

Protected Member Functions

void computeMLSPointNormal (int index, const PointCloudIn &input, const std::vector< int > &nn_indices, std::vector< float > &nn_sqr_dists, PointCloudOut &projected_points, NormalCloud &projected_points_normals)
 Smooth a given point and its neighborghood using Moving Least Squares.
void projectPointToMLSSurface (float &u_disp, float &v_disp, Eigen::Vector3d &u, Eigen::Vector3d &v, Eigen::Vector3d &plane_normal, float &curvature, Eigen::Vector3f &query_point, Eigen::VectorXd &c_vec, int num_neighbors, PointOutT &result_point, pcl::Normal &result_normal)
 Fits a point (sample point) given in the local plane coordinates of an input point (query point) to the MLS surface of the input point.
int searchForNeighbors (int index, std::vector< int > &indices, std::vector< float > &sqr_distances)
 Search for the closest nearest neighbors of a given point using a radius search.

Protected Attributes

bool compute_normals_
 Parameter that specifies whether the normals should be computed for the input cloud or not.
int desired_num_points_in_radius_
 Parameter that specifies the desired number of points within the search radius.
int dilation_iteration_num_
 Number of dilation steps for the VOXEL_GRID_DILATION upsampling method.
std::vector< MLSResultmls_results_
 Stores the MLS result for each point in the input cloud.
NormalCloudPtr normals_
 The point cloud that will hold the estimated normals, if set.
int nr_coeff_
 Number of coefficients, to be computed from the requested order.
int order_
 The order of the polynomial to be fit.
bool polynomial_fit_
boost::variate_generator
< boost::mt19937,
boost::uniform_real< float > > * 
rng_uniform_distribution_
 Random number generator using an uniform distribution of floats.
SearchMethod search_method_
 The search method template for indices.
double search_radius_
 The nearest neighbors search radius for each point.
double sqr_gauss_param_
 Parameter for distance based weighting of neighbors (search_radius_ * search_radius_ works fine)
KdTreePtr tree_
 A pointer to the spatial search object.
UpsamplingMethod upsample_method_
 Parameter that specifies the upsampling method to be used.
double upsampling_radius_
 Radius of the circle in the local point plane that will be sampled.
double upsampling_step_
 Step size for the local plane sampling.
float voxel_size_
 Voxel size for the VOXEL_GRID_DILATION upsampling method.

Private Member Functions

std::string getClassName () const
 Abstract class get name method.
virtual void performProcessing (PointCloudOut &output)
 Abstract surface reconstruction method.

Detailed Description

template<typename PointInT, typename PointOutT>
class pcl::MovingLeastSquares< PointInT, PointOutT >

MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm for data smoothing and improved normal estimation. It also contains methods for upsampling the resulting cloud based on the parametric fit. Reference paper: "Computing and Rendering Point Set Surfaces" by Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin and Claudio T. Silva www.sci.utah.edu/~shachar/Publications/crpss.pdf.

Author:
Zoltan Csaba Marton, Radu B. Rusu, Alexandru E. Ichim, Suat Gedikli

Definition at line 66 of file mls.h.


Member Typedef Documentation

template<typename PointInT, typename PointOutT>
typedef pcl::search::Search<PointInT> pcl::MovingLeastSquares< PointInT, PointOutT >::KdTree

Definition at line 75 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef pcl::search::Search<PointInT>::Ptr pcl::MovingLeastSquares< PointInT, PointOutT >::KdTreePtr

Definition at line 76 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef pcl::PointCloud<pcl::Normal> pcl::MovingLeastSquares< PointInT, PointOutT >::NormalCloud
template<typename PointInT, typename PointOutT>
typedef pcl::PointCloud<pcl::Normal>::Ptr pcl::MovingLeastSquares< PointInT, PointOutT >::NormalCloudPtr

Definition at line 78 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef pcl::PointCloud<PointInT> pcl::MovingLeastSquares< PointInT, PointOutT >::PointCloudIn
template<typename PointInT, typename PointOutT>
typedef PointCloudIn::ConstPtr pcl::MovingLeastSquares< PointInT, PointOutT >::PointCloudInConstPtr

Definition at line 86 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef PointCloudIn::Ptr pcl::MovingLeastSquares< PointInT, PointOutT >::PointCloudInPtr

Definition at line 85 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef pcl::PointCloud<PointOutT> pcl::MovingLeastSquares< PointInT, PointOutT >::PointCloudOut
template<typename PointInT, typename PointOutT>
typedef PointCloudOut::ConstPtr pcl::MovingLeastSquares< PointInT, PointOutT >::PointCloudOutConstPtr

Definition at line 82 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef PointCloudOut::Ptr pcl::MovingLeastSquares< PointInT, PointOutT >::PointCloudOutPtr

Definition at line 81 of file mls.h.

template<typename PointInT, typename PointOutT>
typedef boost::function<int (int, double, std::vector<int> &, std::vector<float> &)> pcl::MovingLeastSquares< PointInT, PointOutT >::SearchMethod

Definition at line 88 of file mls.h.


Member Enumeration Documentation

template<typename PointInT, typename PointOutT>
enum pcl::MovingLeastSquares::UpsamplingMethod
Enumerator:
NONE 
SAMPLE_LOCAL_PLANE 
RANDOM_UNIFORM_DENSITY 
VOXEL_GRID_DILATION 

Definition at line 90 of file mls.h.


Constructor & Destructor Documentation

template<typename PointInT, typename PointOutT>
pcl::MovingLeastSquares< PointInT, PointOutT >::MovingLeastSquares ( ) [inline]

Empty constructor.

Definition at line 93 of file mls.h.


Member Function Documentation

template<typename PointInT , typename PointOutT >
void pcl::MovingLeastSquares< PointInT, PointOutT >::computeMLSPointNormal ( int  index,
const PointCloudIn input,
const std::vector< int > &  nn_indices,
std::vector< float > &  nn_sqr_dists,
PointCloudOut projected_points,
NormalCloud projected_points_normals 
) [protected]

Smooth a given point and its neighborghood using Moving Least Squares.

Parameters:
[in]indexthe inex of the query point in the input cloud
[in]inputthe input point cloud that nn_indices refer to
[in]nn_indicesthe set of nearest neighbors indices for pt
[in]nn_sqr_diststhe set of nearest neighbors squared distances for pt
[out]projected_pointsthe set of points projected points around the query point (in the case of upsampling method NONE, only the query point projected to its own fitted surface will be returned, in the case of the other upsampling methods, multiple points will be returned)
[out]projected_points_normalsthe normals corresponding to the projected points

Definition at line 144 of file mls.hpp.

template<typename PointInT, typename PointOutT>
std::string pcl::MovingLeastSquares< PointInT, PointOutT >::getClassName ( ) const [inline, private]

Abstract class get name method.

Reimplemented in pcl::MovingLeastSquaresOMP< PointInT, PointOutT >, and pcl::MovingLeastSquaresOMP< PointType, PointType >.

Definition at line 475 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::getDilationIterations ( ) [inline]

Get the number of dilation steps of the voxel grid.

Note:
Used only in the VOXEL_GRID_DILATION upsampling method

Definition at line 265 of file mls.h.

template<typename PointInT, typename PointOutT>
float pcl::MovingLeastSquares< PointInT, PointOutT >::getDilationVoxelSize ( ) [inline]

Get the voxel size for the voxel grid.

Note:
Used only in the VOXEL_GRID_DILATION upsampling method

Definition at line 252 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::getPointDensity ( ) [inline]

Get the parameter that specifies the desired number of points within the search radius.

Note:
Used only in the case of RANDOM_UNIFORM_DENSITY upsampling

Definition at line 238 of file mls.h.

template<typename PointInT, typename PointOutT>
bool pcl::MovingLeastSquares< PointInT, PointOutT >::getPolynomialFit ( ) [inline]

Get the polynomial_fit value (true if the surface and normal are approximated using a polynomial).

Definition at line 154 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::getPolynomialOrder ( ) [inline]

Get the order of the polynomial to be fit.

Definition at line 144 of file mls.h.

template<typename PointInT, typename PointOutT>
KdTreePtr pcl::MovingLeastSquares< PointInT, PointOutT >::getSearchMethod ( ) [inline]

Get a pointer to the search method used.

Definition at line 134 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::getSearchRadius ( ) [inline]

Get the sphere radius used for determining the k-nearest neighbors.

Definition at line 165 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::getSqrGaussParam ( ) const [inline]

Get the parameter for distance based weighting of neighbors.

Definition at line 176 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::getUpsamplingRadius ( ) [inline]

Get the radius of the circle in the local point plane that will be sampled.

Note:
Used only in the case of SAMPLE_LOCAL_PLANE upsampling

Definition at line 209 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::getUpsamplingStepSize ( ) [inline]

Get the step size for the local plane sampling.

Note:
Used only in the case of SAMPLE_LOCAL_PLANE upsampling

Definition at line 223 of file mls.h.

template<typename PointInT , typename PointOutT >
void pcl::MovingLeastSquares< PointInT, PointOutT >::performProcessing ( PointCloudOut output) [private, virtual]

Abstract surface reconstruction method.

Parameters:
[out]outputthe result of the reconstruction

Reimplemented in pcl::MovingLeastSquaresOMP< PointInT, PointOutT >, and pcl::MovingLeastSquaresOMP< PointType, PointType >.

Definition at line 439 of file mls.hpp.

template<typename PointInT , typename PointOutT >
void pcl::MovingLeastSquares< PointInT, PointOutT >::process ( PointCloudOut output)

Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()>

Parameters:
[out]outputthe resultant reconstructed surface model

Definition at line 52 of file mls.hpp.

template<typename PointInT , typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::projectPointToMLSSurface ( float &  u_disp,
float &  v_disp,
Eigen::Vector3d &  u,
Eigen::Vector3d &  v,
Eigen::Vector3d &  plane_normal,
float &  curvature,
Eigen::Vector3f &  query_point,
Eigen::VectorXd &  c_vec,
int  num_neighbors,
PointOutT &  result_point,
pcl::Normal result_normal 
) [protected]

Fits a point (sample point) given in the local plane coordinates of an input point (query point) to the MLS surface of the input point.

Parameters:
[in]u_dispthe u coordinate of the sample point in the local plane of the query point
[in]v_dispthe v coordinate of the sample point in the local plane of the query point
[in]uthe axis corresponding to the u-coordinates of the local plane of the query point
[in]vthe axis corresponding to the v-coordinates of the local plane of the query point
[in]plane_normalthe normal to the local plane of the query point
[in]curvaturethe curvature of the surface at the query point
[in]query_pointthe absolute 3D position of the query point
[in]c_vecthe coefficients of the polynomial fit on the MLS surface of the query point
[in]num_neighborsthe number of neighbors of the query point in the input cloud
[out]result_pointthe absolute 3D position of the resulting projected point
[out]result_normalthe normal of the resulting projected point

Definition at line 382 of file mls.hpp.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::searchForNeighbors ( int  index,
std::vector< int > &  indices,
std::vector< float > &  sqr_distances 
) [inline, protected]

Search for the closest nearest neighbors of a given point using a radius search.

Parameters:
[in]indexthe index of the query point
[out]indicesthe resultant vector of indices representing the k-nearest neighbors
[out]sqr_distancesthe resultant squared distances from the query point to the k-nearest neighbors

Definition at line 420 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setComputeNormals ( bool  compute_normals) [inline]

Set whether the algorithm should also store the normals computed.

Note:
This is optional, but need a proper output cloud type

Definition at line 118 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setDilationIterations ( int  iterations) [inline]

Set the number of dilation steps of the voxel grid.

Note:
Used only in the VOXEL_GRID_DILATION upsampling method
Parameters:
[in]iterationsthe number of dilation iterations

Definition at line 259 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setDilationVoxelSize ( float  voxel_size) [inline]

Set the voxel size for the voxel grid.

Note:
Used only in the VOXEL_GRID_DILATION upsampling method
Parameters:
[in]voxel_sizethe edge length of a cubic voxel in the voxel grid

Definition at line 245 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setPointDensity ( int  desired_num_points_in_radius) [inline]

Set the parameter that specifies the desired number of points within the search radius.

Note:
Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
Parameters:
[in]desired_num_points_in_radiusthe desired number of points in the output cloud in a sphere of radius search_radius_ around each point

Definition at line 231 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setPolynomialFit ( bool  polynomial_fit) [inline]

Sets whether the surface and normal are approximated using a polynomial, or only via tangent estimation.

Parameters:
[in]polynomial_fitset to true for polynomial fit

Definition at line 150 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setPolynomialOrder ( int  order) [inline]

Set the order of the polynomial to be fit.

Parameters:
[in]orderthe order of the polynomial

Definition at line 140 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setSearchMethod ( const KdTreePtr tree) [inline]

Provide a pointer to the search object.

Parameters:
[in]treea pointer to the spatial search object.

Definition at line 124 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setSearchRadius ( double  radius) [inline]

Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting.

Parameters:
[in]radiusthe sphere radius that is to contain all k-nearest neighbors
Note:
Calling this method resets the squared Gaussian parameter to radius * radius !

Definition at line 161 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setSqrGaussParam ( double  sqr_gauss_param) [inline]

Set the parameter used for distance based weighting of neighbors (the square of the search radius works best in general).

Parameters:
[in]sqr_gauss_paramthe squared Gaussian parameter

Definition at line 172 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setUpsamplingMethod ( UpsamplingMethod  method) [inline]

Set the upsampling method to be used.

Note:
Options are: * NONE - no upsampling will be done, only the input points will be projected to their own MLS surfaces * SAMPLE_LOCAL_PLANE - the local plane of each input point will be sampled in a circular fashion using the upsampling_radius_ and the upsampling_step_ parameters * RANDOM_UNIFORM_DENSITY - the local plane of each input point will be sampled using an uniform random distribution such that the density of points is constant throughout the cloud - given by the desired_num_points_in_radius_ parameter * VOXEL_GRID_DILATION - the input cloud will be inserted into a voxel grid with voxels of size voxel_size_; this voxel grid will be dilated dilation_iteration_num_ times and the resulting points will be projected to the MLS surface of the closest point in the input cloud; the result is a point cloud with filled holes and a constant point density

Definition at line 195 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setUpsamplingRadius ( double  radius) [inline]

Set the radius of the circle in the local point plane that will be sampled.

Note:
Used only in the case of SAMPLE_LOCAL_PLANE upsampling
Parameters:
[in]radiusthe radius of the circle

Definition at line 203 of file mls.h.

template<typename PointInT, typename PointOutT>
void pcl::MovingLeastSquares< PointInT, PointOutT >::setUpsamplingStepSize ( double  step_size) [inline]

Set the step size for the local plane sampling.

Note:
Used only in the case of SAMPLE_LOCAL_PLANE upsampling
Parameters:
[in]step_sizethe step size

Definition at line 216 of file mls.h.


Member Data Documentation

template<typename PointInT, typename PointOutT>
bool pcl::MovingLeastSquares< PointInT, PointOutT >::compute_normals_ [protected]

Parameter that specifies whether the normals should be computed for the input cloud or not.

Definition at line 296 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::desired_num_points_in_radius_ [protected]

Parameter that specifies the desired number of points within the search radius.

Note:
Used only in the case of RANDOM_UNIFORM_DENSITY upsampling

Definition at line 319 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::dilation_iteration_num_ [protected]

Number of dilation steps for the VOXEL_GRID_DILATION upsampling method.

Definition at line 409 of file mls.h.

template<typename PointInT, typename PointOutT>
std::vector<MLSResult> pcl::MovingLeastSquares< PointInT, PointOutT >::mls_results_ [protected]

Stores the MLS result for each point in the input cloud.

Note:
Used only in the case of VOXEL_GRID_DILATION upsampling

Definition at line 346 of file mls.h.

template<typename PointInT, typename PointOutT>
NormalCloudPtr pcl::MovingLeastSquares< PointInT, PointOutT >::normals_ [protected]

The point cloud that will hold the estimated normals, if set.

Definition at line 275 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::nr_coeff_ [protected]

Number of coefficients, to be computed from the requested order.

Definition at line 412 of file mls.h.

template<typename PointInT, typename PointOutT>
int pcl::MovingLeastSquares< PointInT, PointOutT >::order_ [protected]

The order of the polynomial to be fit.

Definition at line 284 of file mls.h.

template<typename PointInT, typename PointOutT>
bool pcl::MovingLeastSquares< PointInT, PointOutT >::polynomial_fit_ [protected]

True if the surface and normal be approximated using a polynomial, false if tangent estimation is sufficient.

Definition at line 287 of file mls.h.

template<typename PointInT, typename PointOutT>
boost::variate_generator<boost::mt19937, boost::uniform_real<float> >* pcl::MovingLeastSquares< PointInT, PointOutT >::rng_uniform_distribution_ [protected]

Random number generator using an uniform distribution of floats.

Note:
Used only in the case of RANDOM_UNIFORM_DENSITY upsampling

Definition at line 314 of file mls.h.

template<typename PointInT, typename PointOutT>
SearchMethod pcl::MovingLeastSquares< PointInT, PointOutT >::search_method_ [protected]

The search method template for indices.

Definition at line 278 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::search_radius_ [protected]

The nearest neighbors search radius for each point.

Definition at line 290 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::sqr_gauss_param_ [protected]

Parameter for distance based weighting of neighbors (search_radius_ * search_radius_ works fine)

Definition at line 293 of file mls.h.

template<typename PointInT, typename PointOutT>
KdTreePtr pcl::MovingLeastSquares< PointInT, PointOutT >::tree_ [protected]

A pointer to the spatial search object.

Definition at line 281 of file mls.h.

template<typename PointInT, typename PointOutT>
UpsamplingMethod pcl::MovingLeastSquares< PointInT, PointOutT >::upsample_method_ [protected]

Parameter that specifies the upsampling method to be used.

Definition at line 299 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::upsampling_radius_ [protected]

Radius of the circle in the local point plane that will be sampled.

Note:
Used only in the case of SAMPLE_LOCAL_PLANE upsampling

Definition at line 304 of file mls.h.

template<typename PointInT, typename PointOutT>
double pcl::MovingLeastSquares< PointInT, PointOutT >::upsampling_step_ [protected]

Step size for the local plane sampling.

Note:
Used only in the case of SAMPLE_LOCAL_PLANE upsampling

Definition at line 309 of file mls.h.

template<typename PointInT, typename PointOutT>
float pcl::MovingLeastSquares< PointInT, PointOutT >::voxel_size_ [protected]

Voxel size for the VOXEL_GRID_DILATION upsampling method.

Definition at line 406 of file mls.h.


The documentation for this class was generated from the following files:


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:19:40