Variables
svm_ROC Namespace Reference

Variables

list all_tpr = []
tuple classifier = svm.SVC(probability=True)
tuple cv = StratifiedKFold(y, k=9)
 Code below modified from http://scikit-learn.org/stable/auto_examples/plot_roc_crossval.html#example-plot-roc-crossval-py.
list data = svm_data['data']
tuple data_scaled = scaler.transform(data)
string label = 'Mean ROC (area = %0.2f)'
list labels = svm_data['labels']
tuple mean_auc = auc(mean_fpr, mean_tpr)
tuple mean_fpr = np.linspace(0, 1, n_samples)
float mean_tpr = 0.0
tuple probas_ = classifier.fit(X[train], y[train])
tuple roc_auc = auc(fpr, tpr)
tuple scaler = pps.Scaler()
tuple svm_data = pickle.load(f)

Variable Documentation

Definition at line 42 of file svm_ROC.py.

tuple svm_ROC::classifier = svm.SVC(probability=True)

Definition at line 22 of file svm_ROC.py.

tuple svm_ROC::cv = StratifiedKFold(y, k=9)

Code below modified from http://scikit-learn.org/stable/auto_examples/plot_roc_crossval.html#example-plot-roc-crossval-py.

Classification and ROC analysis Run classifier with crossvalidation and plot ROC curves

Definition at line 38 of file svm_ROC.py.

Definition at line 15 of file svm_ROC.py.

Definition at line 20 of file svm_ROC.py.

string svm_ROC::label = 'Mean ROC (area = %0.2f)'

Definition at line 59 of file svm_ROC.py.

Definition at line 14 of file svm_ROC.py.

Definition at line 57 of file svm_ROC.py.

tuple svm_ROC::mean_fpr = np.linspace(0, 1, n_samples)

Definition at line 41 of file svm_ROC.py.

float svm_ROC::mean_tpr = 0.0

Definition at line 40 of file svm_ROC.py.

Definition at line 45 of file svm_ROC.py.

tuple svm_ROC::roc_auc = auc(fpr, tpr)

Definition at line 50 of file svm_ROC.py.

tuple svm_ROC::scaler = pps.Scaler()

Definition at line 17 of file svm_ROC.py.

tuple svm_ROC::svm_data = pickle.load(f)

Definition at line 13 of file svm_ROC.py.



wouse
Author(s): Phillip M. Grice, Advisor: Prof. Charlie Kemp, Lab: The Healthcare Robotoics Lab at Georgia Tech.
autogenerated on Wed Nov 27 2013 11:57:42