GraspStatus.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/srv/GraspStatus.srv */
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "ros/service_traits.h"
00018 
00019 #include "object_manipulation_msgs/Grasp.h"
00020 
00021 
00022 
00023 namespace object_manipulation_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct GraspStatusRequest_ {
00027   typedef GraspStatusRequest_<ContainerAllocator> Type;
00028 
00029   GraspStatusRequest_()
00030   : grasp()
00031   {
00032   }
00033 
00034   GraspStatusRequest_(const ContainerAllocator& _alloc)
00035   : grasp(_alloc)
00036   {
00037   }
00038 
00039   typedef  ::object_manipulation_msgs::Grasp_<ContainerAllocator>  _grasp_type;
00040    ::object_manipulation_msgs::Grasp_<ContainerAllocator>  grasp;
00041 
00042 
00043   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > Ptr;
00044   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator>  const> ConstPtr;
00045   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00046 }; // struct GraspStatusRequest
00047 typedef  ::object_manipulation_msgs::GraspStatusRequest_<std::allocator<void> > GraspStatusRequest;
00048 
00049 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest> GraspStatusRequestPtr;
00050 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest const> GraspStatusRequestConstPtr;
00051 
00052 
00053 template <class ContainerAllocator>
00054 struct GraspStatusResponse_ {
00055   typedef GraspStatusResponse_<ContainerAllocator> Type;
00056 
00057   GraspStatusResponse_()
00058   : is_hand_occupied(false)
00059   {
00060   }
00061 
00062   GraspStatusResponse_(const ContainerAllocator& _alloc)
00063   : is_hand_occupied(false)
00064   {
00065   }
00066 
00067   typedef uint8_t _is_hand_occupied_type;
00068   uint8_t is_hand_occupied;
00069 
00070 
00071   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > Ptr;
00072   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator>  const> ConstPtr;
00073   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00074 }; // struct GraspStatusResponse
00075 typedef  ::object_manipulation_msgs::GraspStatusResponse_<std::allocator<void> > GraspStatusResponse;
00076 
00077 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse> GraspStatusResponsePtr;
00078 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse const> GraspStatusResponseConstPtr;
00079 
00080 struct GraspStatus
00081 {
00082 
00083 typedef GraspStatusRequest Request;
00084 typedef GraspStatusResponse Response;
00085 Request request;
00086 Response response;
00087 
00088 typedef Request RequestType;
00089 typedef Response ResponseType;
00090 }; // struct GraspStatus
00091 } // namespace object_manipulation_msgs
00092 
00093 namespace ros
00094 {
00095 namespace message_traits
00096 {
00097 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > : public TrueType {};
00098 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator>  const> : public TrueType {};
00099 template<class ContainerAllocator>
00100 struct MD5Sum< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00101   static const char* value() 
00102   {
00103     return "46f92cc36c8200695a0cfa52ac75eb0a";
00104   }
00105 
00106   static const char* value(const  ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 
00107   static const uint64_t static_value1 = 0x46f92cc36c820069ULL;
00108   static const uint64_t static_value2 = 0x5a0cfa52ac75eb0aULL;
00109 };
00110 
00111 template<class ContainerAllocator>
00112 struct DataType< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00113   static const char* value() 
00114   {
00115     return "object_manipulation_msgs/GraspStatusRequest";
00116   }
00117 
00118   static const char* value(const  ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 
00119 };
00120 
00121 template<class ContainerAllocator>
00122 struct Definition< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00123   static const char* value() 
00124   {
00125     return "\n\
00126 \n\
00127 \n\
00128 \n\
00129 \n\
00130 \n\
00131 \n\
00132 \n\
00133 object_manipulation_msgs/Grasp grasp\n\
00134 \n\
00135 \n\
00136 ================================================================================\n\
00137 MSG: object_manipulation_msgs/Grasp\n\
00138 \n\
00139 # The internal posture of the hand for the pre-grasp\n\
00140 # only positions are used\n\
00141 sensor_msgs/JointState pre_grasp_posture\n\
00142 \n\
00143 # The internal posture of the hand for the grasp\n\
00144 # positions and efforts are used\n\
00145 sensor_msgs/JointState grasp_posture\n\
00146 \n\
00147 # The position of the end-effector for the grasp relative to a reference frame \n\
00148 # (that is always specified elsewhere, not in this message)\n\
00149 geometry_msgs/Pose grasp_pose\n\
00150 \n\
00151 # The estimated probability of success for this grasp\n\
00152 float64 success_probability\n\
00153 \n\
00154 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00155 bool cluster_rep\n\
00156 \n\
00157 # how far the pre-grasp should ideally be away from the grasp\n\
00158 float32 desired_approach_distance\n\
00159 \n\
00160 # how much distance between pre-grasp and grasp must actually be feasible \n\
00161 # for the grasp not to be rejected\n\
00162 float32 min_approach_distance\n\
00163 \n\
00164 # an optional list of obstacles that we have semantic information about\n\
00165 # and that we expect might move in the course of executing this grasp\n\
00166 # the grasp planner is expected to make sure they move in an OK way; during\n\
00167 # execution, grasp executors will not check for collisions against these objects\n\
00168 GraspableObject[] moved_obstacles\n\
00169 \n\
00170 ================================================================================\n\
00171 MSG: sensor_msgs/JointState\n\
00172 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00173 #\n\
00174 # The state of each joint (revolute or prismatic) is defined by:\n\
00175 #  * the position of the joint (rad or m),\n\
00176 #  * the velocity of the joint (rad/s or m/s) and \n\
00177 #  * the effort that is applied in the joint (Nm or N).\n\
00178 #\n\
00179 # Each joint is uniquely identified by its name\n\
00180 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00181 # in one message have to be recorded at the same time.\n\
00182 #\n\
00183 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00184 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00185 # effort associated with them, you can leave the effort array empty. \n\
00186 #\n\
00187 # All arrays in this message should have the same size, or be empty.\n\
00188 # This is the only way to uniquely associate the joint name with the correct\n\
00189 # states.\n\
00190 \n\
00191 \n\
00192 Header header\n\
00193 \n\
00194 string[] name\n\
00195 float64[] position\n\
00196 float64[] velocity\n\
00197 float64[] effort\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: std_msgs/Header\n\
00201 # Standard metadata for higher-level stamped data types.\n\
00202 # This is generally used to communicate timestamped data \n\
00203 # in a particular coordinate frame.\n\
00204 # \n\
00205 # sequence ID: consecutively increasing ID \n\
00206 uint32 seq\n\
00207 #Two-integer timestamp that is expressed as:\n\
00208 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00209 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00210 # time-handling sugar is provided by the client library\n\
00211 time stamp\n\
00212 #Frame this data is associated with\n\
00213 # 0: no frame\n\
00214 # 1: global frame\n\
00215 string frame_id\n\
00216 \n\
00217 ================================================================================\n\
00218 MSG: geometry_msgs/Pose\n\
00219 # A representation of pose in free space, composed of postion and orientation. \n\
00220 Point position\n\
00221 Quaternion orientation\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: geometry_msgs/Point\n\
00225 # This contains the position of a point in free space\n\
00226 float64 x\n\
00227 float64 y\n\
00228 float64 z\n\
00229 \n\
00230 ================================================================================\n\
00231 MSG: geometry_msgs/Quaternion\n\
00232 # This represents an orientation in free space in quaternion form.\n\
00233 \n\
00234 float64 x\n\
00235 float64 y\n\
00236 float64 z\n\
00237 float64 w\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: object_manipulation_msgs/GraspableObject\n\
00241 # an object that the object_manipulator can work on\n\
00242 \n\
00243 # a graspable object can be represented in multiple ways. This message\n\
00244 # can contain all of them. Which one is actually used is up to the receiver\n\
00245 # of this message. When adding new representations, one must be careful that\n\
00246 # they have reasonable lightweight defaults indicating that that particular\n\
00247 # representation is not available.\n\
00248 \n\
00249 # the tf frame to be used as a reference frame when combining information from\n\
00250 # the different representations below\n\
00251 string reference_frame_id\n\
00252 \n\
00253 # potential recognition results from a database of models\n\
00254 # all poses are relative to the object reference pose\n\
00255 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00256 \n\
00257 # the point cloud itself\n\
00258 sensor_msgs/PointCloud cluster\n\
00259 \n\
00260 # a region of a PointCloud2 of interest\n\
00261 object_manipulation_msgs/SceneRegion region\n\
00262 \n\
00263 # the name that this object has in the collision environment\n\
00264 string collision_name\n\
00265 ================================================================================\n\
00266 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00267 # Informs that a specific model from the Model Database has been \n\
00268 # identified at a certain location\n\
00269 \n\
00270 # the database id of the model\n\
00271 int32 model_id\n\
00272 \n\
00273 # the pose that it can be found in\n\
00274 geometry_msgs/PoseStamped pose\n\
00275 \n\
00276 # a measure of the confidence level in this detection result\n\
00277 float32 confidence\n\
00278 \n\
00279 # the name of the object detector that generated this detection result\n\
00280 string detector_name\n\
00281 \n\
00282 ================================================================================\n\
00283 MSG: geometry_msgs/PoseStamped\n\
00284 # A Pose with reference coordinate frame and timestamp\n\
00285 Header header\n\
00286 Pose pose\n\
00287 \n\
00288 ================================================================================\n\
00289 MSG: sensor_msgs/PointCloud\n\
00290 # This message holds a collection of 3d points, plus optional additional\n\
00291 # information about each point.\n\
00292 \n\
00293 # Time of sensor data acquisition, coordinate frame ID.\n\
00294 Header header\n\
00295 \n\
00296 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00297 # in the frame given in the header.\n\
00298 geometry_msgs/Point32[] points\n\
00299 \n\
00300 # Each channel should have the same number of elements as points array,\n\
00301 # and the data in each channel should correspond 1:1 with each point.\n\
00302 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00303 ChannelFloat32[] channels\n\
00304 \n\
00305 ================================================================================\n\
00306 MSG: geometry_msgs/Point32\n\
00307 # This contains the position of a point in free space(with 32 bits of precision).\n\
00308 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00309 # \n\
00310 # This recommendation is to promote interoperability.  \n\
00311 #\n\
00312 # This message is designed to take up less space when sending\n\
00313 # lots of points at once, as in the case of a PointCloud.  \n\
00314 \n\
00315 float32 x\n\
00316 float32 y\n\
00317 float32 z\n\
00318 ================================================================================\n\
00319 MSG: sensor_msgs/ChannelFloat32\n\
00320 # This message is used by the PointCloud message to hold optional data\n\
00321 # associated with each point in the cloud. The length of the values\n\
00322 # array should be the same as the length of the points array in the\n\
00323 # PointCloud, and each value should be associated with the corresponding\n\
00324 # point.\n\
00325 \n\
00326 # Channel names in existing practice include:\n\
00327 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00328 #              This is opposite to usual conventions but remains for\n\
00329 #              historical reasons. The newer PointCloud2 message has no\n\
00330 #              such problem.\n\
00331 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00332 #           (R,G,B) values packed into the least significant 24 bits,\n\
00333 #           in order.\n\
00334 #   \"intensity\" - laser or pixel intensity.\n\
00335 #   \"distance\"\n\
00336 \n\
00337 # The channel name should give semantics of the channel (e.g.\n\
00338 # \"intensity\" instead of \"value\").\n\
00339 string name\n\
00340 \n\
00341 # The values array should be 1-1 with the elements of the associated\n\
00342 # PointCloud.\n\
00343 float32[] values\n\
00344 \n\
00345 ================================================================================\n\
00346 MSG: object_manipulation_msgs/SceneRegion\n\
00347 # Point cloud\n\
00348 sensor_msgs/PointCloud2 cloud\n\
00349 \n\
00350 # Indices for the region of interest\n\
00351 int32[] mask\n\
00352 \n\
00353 # One of the corresponding 2D images, if applicable\n\
00354 sensor_msgs/Image image\n\
00355 \n\
00356 # The disparity image, if applicable\n\
00357 sensor_msgs/Image disparity_image\n\
00358 \n\
00359 # Camera info for the camera that took the image\n\
00360 sensor_msgs/CameraInfo cam_info\n\
00361 \n\
00362 # a 3D region of interest for grasp planning\n\
00363 geometry_msgs/PoseStamped  roi_box_pose\n\
00364 geometry_msgs/Vector3      roi_box_dims\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: sensor_msgs/PointCloud2\n\
00368 # This message holds a collection of N-dimensional points, which may\n\
00369 # contain additional information such as normals, intensity, etc. The\n\
00370 # point data is stored as a binary blob, its layout described by the\n\
00371 # contents of the \"fields\" array.\n\
00372 \n\
00373 # The point cloud data may be organized 2d (image-like) or 1d\n\
00374 # (unordered). Point clouds organized as 2d images may be produced by\n\
00375 # camera depth sensors such as stereo or time-of-flight.\n\
00376 \n\
00377 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00378 # points).\n\
00379 Header header\n\
00380 \n\
00381 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00382 # 1 and width is the length of the point cloud.\n\
00383 uint32 height\n\
00384 uint32 width\n\
00385 \n\
00386 # Describes the channels and their layout in the binary data blob.\n\
00387 PointField[] fields\n\
00388 \n\
00389 bool    is_bigendian # Is this data bigendian?\n\
00390 uint32  point_step   # Length of a point in bytes\n\
00391 uint32  row_step     # Length of a row in bytes\n\
00392 uint8[] data         # Actual point data, size is (row_step*height)\n\
00393 \n\
00394 bool is_dense        # True if there are no invalid points\n\
00395 \n\
00396 ================================================================================\n\
00397 MSG: sensor_msgs/PointField\n\
00398 # This message holds the description of one point entry in the\n\
00399 # PointCloud2 message format.\n\
00400 uint8 INT8    = 1\n\
00401 uint8 UINT8   = 2\n\
00402 uint8 INT16   = 3\n\
00403 uint8 UINT16  = 4\n\
00404 uint8 INT32   = 5\n\
00405 uint8 UINT32  = 6\n\
00406 uint8 FLOAT32 = 7\n\
00407 uint8 FLOAT64 = 8\n\
00408 \n\
00409 string name      # Name of field\n\
00410 uint32 offset    # Offset from start of point struct\n\
00411 uint8  datatype  # Datatype enumeration, see above\n\
00412 uint32 count     # How many elements in the field\n\
00413 \n\
00414 ================================================================================\n\
00415 MSG: sensor_msgs/Image\n\
00416 # This message contains an uncompressed image\n\
00417 # (0, 0) is at top-left corner of image\n\
00418 #\n\
00419 \n\
00420 Header header        # Header timestamp should be acquisition time of image\n\
00421                      # Header frame_id should be optical frame of camera\n\
00422                      # origin of frame should be optical center of cameara\n\
00423                      # +x should point to the right in the image\n\
00424                      # +y should point down in the image\n\
00425                      # +z should point into to plane of the image\n\
00426                      # If the frame_id here and the frame_id of the CameraInfo\n\
00427                      # message associated with the image conflict\n\
00428                      # the behavior is undefined\n\
00429 \n\
00430 uint32 height         # image height, that is, number of rows\n\
00431 uint32 width          # image width, that is, number of columns\n\
00432 \n\
00433 # The legal values for encoding are in file src/image_encodings.cpp\n\
00434 # If you want to standardize a new string format, join\n\
00435 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00436 \n\
00437 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00438                       # taken from the list of strings in src/image_encodings.cpp\n\
00439 \n\
00440 uint8 is_bigendian    # is this data bigendian?\n\
00441 uint32 step           # Full row length in bytes\n\
00442 uint8[] data          # actual matrix data, size is (step * rows)\n\
00443 \n\
00444 ================================================================================\n\
00445 MSG: sensor_msgs/CameraInfo\n\
00446 # This message defines meta information for a camera. It should be in a\n\
00447 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00448 # image topics named:\n\
00449 #\n\
00450 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00451 #   image            - monochrome, distorted\n\
00452 #   image_color      - color, distorted\n\
00453 #   image_rect       - monochrome, rectified\n\
00454 #   image_rect_color - color, rectified\n\
00455 #\n\
00456 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00457 # for producing the four processed image topics from image_raw and\n\
00458 # camera_info. The meaning of the camera parameters are described in\n\
00459 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00460 #\n\
00461 # The image_geometry package provides a user-friendly interface to\n\
00462 # common operations using this meta information. If you want to, e.g.,\n\
00463 # project a 3d point into image coordinates, we strongly recommend\n\
00464 # using image_geometry.\n\
00465 #\n\
00466 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00467 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00468 # indicates an uncalibrated camera.\n\
00469 \n\
00470 #######################################################################\n\
00471 #                     Image acquisition info                          #\n\
00472 #######################################################################\n\
00473 \n\
00474 # Time of image acquisition, camera coordinate frame ID\n\
00475 Header header    # Header timestamp should be acquisition time of image\n\
00476                  # Header frame_id should be optical frame of camera\n\
00477                  # origin of frame should be optical center of camera\n\
00478                  # +x should point to the right in the image\n\
00479                  # +y should point down in the image\n\
00480                  # +z should point into the plane of the image\n\
00481 \n\
00482 \n\
00483 #######################################################################\n\
00484 #                      Calibration Parameters                         #\n\
00485 #######################################################################\n\
00486 # These are fixed during camera calibration. Their values will be the #\n\
00487 # same in all messages until the camera is recalibrated. Note that    #\n\
00488 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00489 #                                                                     #\n\
00490 # The internal parameters can be used to warp a raw (distorted) image #\n\
00491 # to:                                                                 #\n\
00492 #   1. An undistorted image (requires D and K)                        #\n\
00493 #   2. A rectified image (requires D, K, R)                           #\n\
00494 # The projection matrix P projects 3D points into the rectified image.#\n\
00495 #######################################################################\n\
00496 \n\
00497 # The image dimensions with which the camera was calibrated. Normally\n\
00498 # this will be the full camera resolution in pixels.\n\
00499 uint32 height\n\
00500 uint32 width\n\
00501 \n\
00502 # The distortion model used. Supported models are listed in\n\
00503 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00504 # simple model of radial and tangential distortion - is sufficent.\n\
00505 string distortion_model\n\
00506 \n\
00507 # The distortion parameters, size depending on the distortion model.\n\
00508 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00509 float64[] D\n\
00510 \n\
00511 # Intrinsic camera matrix for the raw (distorted) images.\n\
00512 #     [fx  0 cx]\n\
00513 # K = [ 0 fy cy]\n\
00514 #     [ 0  0  1]\n\
00515 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00516 # coordinates using the focal lengths (fx, fy) and principal point\n\
00517 # (cx, cy).\n\
00518 float64[9]  K # 3x3 row-major matrix\n\
00519 \n\
00520 # Rectification matrix (stereo cameras only)\n\
00521 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00522 # stereo image plane so that epipolar lines in both stereo images are\n\
00523 # parallel.\n\
00524 float64[9]  R # 3x3 row-major matrix\n\
00525 \n\
00526 # Projection/camera matrix\n\
00527 #     [fx'  0  cx' Tx]\n\
00528 # P = [ 0  fy' cy' Ty]\n\
00529 #     [ 0   0   1   0]\n\
00530 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00531 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00532 #  is the normal camera intrinsic matrix for the rectified image.\n\
00533 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00534 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00535 #  (cx', cy') - these may differ from the values in K.\n\
00536 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00537 #  also have R = the identity and P[1:3,1:3] = K.\n\
00538 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00539 #  position of the optical center of the second camera in the first\n\
00540 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00541 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00542 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00543 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00544 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00545 #  the rectified image is given by:\n\
00546 #  [u v w]' = P * [X Y Z 1]'\n\
00547 #         x = u / w\n\
00548 #         y = v / w\n\
00549 #  This holds for both images of a stereo pair.\n\
00550 float64[12] P # 3x4 row-major matrix\n\
00551 \n\
00552 \n\
00553 #######################################################################\n\
00554 #                      Operational Parameters                         #\n\
00555 #######################################################################\n\
00556 # These define the image region actually captured by the camera       #\n\
00557 # driver. Although they affect the geometry of the output image, they #\n\
00558 # may be changed freely without recalibrating the camera.             #\n\
00559 #######################################################################\n\
00560 \n\
00561 # Binning refers here to any camera setting which combines rectangular\n\
00562 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00563 #  resolution of the output image to\n\
00564 #  (width / binning_x) x (height / binning_y).\n\
00565 # The default values binning_x = binning_y = 0 is considered the same\n\
00566 #  as binning_x = binning_y = 1 (no subsampling).\n\
00567 uint32 binning_x\n\
00568 uint32 binning_y\n\
00569 \n\
00570 # Region of interest (subwindow of full camera resolution), given in\n\
00571 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00572 #  always denotes the same window of pixels on the camera sensor,\n\
00573 #  regardless of binning settings.\n\
00574 # The default setting of roi (all values 0) is considered the same as\n\
00575 #  full resolution (roi.width = width, roi.height = height).\n\
00576 RegionOfInterest roi\n\
00577 \n\
00578 ================================================================================\n\
00579 MSG: sensor_msgs/RegionOfInterest\n\
00580 # This message is used to specify a region of interest within an image.\n\
00581 #\n\
00582 # When used to specify the ROI setting of the camera when the image was\n\
00583 # taken, the height and width fields should either match the height and\n\
00584 # width fields for the associated image; or height = width = 0\n\
00585 # indicates that the full resolution image was captured.\n\
00586 \n\
00587 uint32 x_offset  # Leftmost pixel of the ROI\n\
00588                  # (0 if the ROI includes the left edge of the image)\n\
00589 uint32 y_offset  # Topmost pixel of the ROI\n\
00590                  # (0 if the ROI includes the top edge of the image)\n\
00591 uint32 height    # Height of ROI\n\
00592 uint32 width     # Width of ROI\n\
00593 \n\
00594 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00595 # ROI in this message. Typically this should be False if the full image\n\
00596 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00597 # used).\n\
00598 bool do_rectify\n\
00599 \n\
00600 ================================================================================\n\
00601 MSG: geometry_msgs/Vector3\n\
00602 # This represents a vector in free space. \n\
00603 \n\
00604 float64 x\n\
00605 float64 y\n\
00606 float64 z\n\
00607 ";
00608   }
00609 
00610   static const char* value(const  ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 
00611 };
00612 
00613 } // namespace message_traits
00614 } // namespace ros
00615 
00616 
00617 namespace ros
00618 {
00619 namespace message_traits
00620 {
00621 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > : public TrueType {};
00622 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator>  const> : public TrueType {};
00623 template<class ContainerAllocator>
00624 struct MD5Sum< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
00625   static const char* value() 
00626   {
00627     return "d58cf7836f039d8e002583af45001d6d";
00628   }
00629 
00630   static const char* value(const  ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 
00631   static const uint64_t static_value1 = 0xd58cf7836f039d8eULL;
00632   static const uint64_t static_value2 = 0x002583af45001d6dULL;
00633 };
00634 
00635 template<class ContainerAllocator>
00636 struct DataType< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
00637   static const char* value() 
00638   {
00639     return "object_manipulation_msgs/GraspStatusResponse";
00640   }
00641 
00642   static const char* value(const  ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 
00643 };
00644 
00645 template<class ContainerAllocator>
00646 struct Definition< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
00647   static const char* value() 
00648   {
00649     return "\n\
00650 bool is_hand_occupied\n\
00651 \n\
00652 \n\
00653 ";
00654   }
00655 
00656   static const char* value(const  ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 
00657 };
00658 
00659 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > : public TrueType {};
00660 } // namespace message_traits
00661 } // namespace ros
00662 
00663 namespace ros
00664 {
00665 namespace serialization
00666 {
00667 
00668 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> >
00669 {
00670   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00671   {
00672     stream.next(m.grasp);
00673   }
00674 
00675   ROS_DECLARE_ALLINONE_SERIALIZER;
00676 }; // struct GraspStatusRequest_
00677 } // namespace serialization
00678 } // namespace ros
00679 
00680 
00681 namespace ros
00682 {
00683 namespace serialization
00684 {
00685 
00686 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> >
00687 {
00688   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00689   {
00690     stream.next(m.is_hand_occupied);
00691   }
00692 
00693   ROS_DECLARE_ALLINONE_SERIALIZER;
00694 }; // struct GraspStatusResponse_
00695 } // namespace serialization
00696 } // namespace ros
00697 
00698 namespace ros
00699 {
00700 namespace service_traits
00701 {
00702 template<>
00703 struct MD5Sum<object_manipulation_msgs::GraspStatus> {
00704   static const char* value() 
00705   {
00706     return "222f0090ca965a030dae07c0a77db48b";
00707   }
00708 
00709   static const char* value(const object_manipulation_msgs::GraspStatus&) { return value(); } 
00710 };
00711 
00712 template<>
00713 struct DataType<object_manipulation_msgs::GraspStatus> {
00714   static const char* value() 
00715   {
00716     return "object_manipulation_msgs/GraspStatus";
00717   }
00718 
00719   static const char* value(const object_manipulation_msgs::GraspStatus&) { return value(); } 
00720 };
00721 
00722 template<class ContainerAllocator>
00723 struct MD5Sum<object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00724   static const char* value() 
00725   {
00726     return "222f0090ca965a030dae07c0a77db48b";
00727   }
00728 
00729   static const char* value(const object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 
00730 };
00731 
00732 template<class ContainerAllocator>
00733 struct DataType<object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00734   static const char* value() 
00735   {
00736     return "object_manipulation_msgs/GraspStatus";
00737   }
00738 
00739   static const char* value(const object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 
00740 };
00741 
00742 template<class ContainerAllocator>
00743 struct MD5Sum<object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
00744   static const char* value() 
00745   {
00746     return "222f0090ca965a030dae07c0a77db48b";
00747   }
00748 
00749   static const char* value(const object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 
00750 };
00751 
00752 template<class ContainerAllocator>
00753 struct DataType<object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
00754   static const char* value() 
00755   {
00756     return "object_manipulation_msgs/GraspStatus";
00757   }
00758 
00759   static const char* value(const object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 
00760 };
00761 
00762 } // namespace service_traits
00763 } // namespace ros
00764 
00765 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H
00766 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12