$search
00001 /********************************************************************* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2009, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of the Willow Garage nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 *********************************************************************/ 00034 00035 // Author(s): Marius Muja, Matei Ciocarlie and Romain Thibaux 00036 00037 #include "tabletop_object_detector/model_fitter.h" 00038 00039 #include <math.h> 00040 #include <distance_field/propagation_distance_field.h> 00041 00042 #include "tabletop_object_detector/marker_generator.h" 00043 00044 namespace tabletop_object_detector { 00045 00047 class IterativeTranslationFitter : public DistanceFieldFitter 00048 { 00049 private: 00050 00052 template <class PointCloudType> 00053 geometry_msgs::Point32 centerOfSupport(const PointCloudType& cloud); 00054 00056 template <class PointCloudType> 00057 double getFitScoreAndGradient(const PointCloudType& cloud, 00058 const geometry_msgs::Point32& location, 00059 geometry_msgs::Point32& vector, 00060 double &maxDist); 00061 public: 00063 IterativeTranslationFitter() : DistanceFieldFitter() {} 00065 ~IterativeTranslationFitter() {} 00066 00068 template <class PointCloudType> 00069 ModelFitInfo fitPointCloud(const PointCloudType& cloud); 00070 }; 00071 00072 //------------------------- Implementation follows ---------------------------------------- 00073 00077 template <class PointCloudType> 00078 geometry_msgs::Point32 IterativeTranslationFitter::centerOfSupport(const PointCloudType& cloud) 00079 { 00080 geometry_msgs::Point32 center; 00081 center.x = center.y = center.z = 0; 00082 if (cloud.points.empty()) 00083 { 00084 return center; 00085 } 00086 for (unsigned int i=0; i<cloud.points.size(); ++i) 00087 { 00088 center.x += cloud.points[i].x; 00089 center.y += cloud.points[i].y; 00090 } 00091 center.x /= cloud.points.size(); 00092 center.y /= cloud.points.size(); 00093 return center; 00094 } 00095 00096 00097 template <class PointCloudType> 00098 double IterativeTranslationFitter::getFitScoreAndGradient(const PointCloudType& cloud, 00099 const geometry_msgs::Point32& location, 00100 geometry_msgs::Point32& vector, 00101 double &max_dist) 00102 { 00103 double score = 0; 00104 max_dist = 0; 00105 00106 vector.x = 0; 00107 vector.y = 0; 00108 vector.z = 0; 00109 int cnt = 0; 00110 00111 for (size_t i=0;i<cloud.points.size();i++) 00112 { 00113 double wx = cloud.points[i].x-location.x; 00114 double wy = cloud.points[i].y-location.y; 00115 double wz = cloud.points[i].z-location.z; 00116 00117 int x, y, z; 00118 double val = truncate_value_; 00119 if (distance_voxel_grid_->worldToGrid(wx,wy,wz,x,y,z)) 00120 { 00121 distance_field::PropDistanceFieldVoxel& voxel = distance_voxel_grid_->getCell(x,y,z); 00122 double cx, cy, cz; 00123 if (voxel.closest_point_[0] != distance_field::PropDistanceFieldVoxel::UNINITIALIZED) 00124 { 00125 distance_voxel_grid_->gridToWorld(voxel.closest_point_[0], 00126 voxel.closest_point_[1], 00127 voxel.closest_point_[2], 00128 cx,cy,cz); 00129 val = distance_voxel_grid_->getDistanceFromCell(x,y,z); 00130 vector.x += (cx-wx); 00131 vector.y += (cy-wy); 00132 vector.z += (cz-wz); 00133 cnt++; 00134 if (val>truncate_value_) 00135 { 00136 val = truncate_value_; 00137 } 00138 } 00139 else 00140 { 00141 } 00142 } 00143 else 00144 { 00145 } 00146 max_dist = std::max(max_dist,val); 00147 //score += val*val; 00148 score += val; 00149 } 00150 score /= (cloud.points.size()); 00151 if (cnt!=0) 00152 { 00153 vector.x /= cnt; 00154 vector.y /= cnt; 00155 vector.z /= cnt; 00156 } 00157 00158 return score; 00159 } 00160 00171 template <class PointCloudType> 00172 ModelFitInfo IterativeTranslationFitter::fitPointCloud(const PointCloudType& cloud) 00173 { 00174 if (cloud.points.empty()) 00175 { 00176 ROS_ERROR("Attempt to fit model to empty point cloud"); 00177 geometry_msgs::Pose bogus_pose; 00178 return ModelFitInfo(model_id_, bogus_pose, -1.0); 00179 } 00180 00181 // compute center of point cloud 00182 geometry_msgs::Point32 center = centerOfSupport<PointCloudType>(cloud); 00183 00184 geometry_msgs::Point32 location = center; 00185 geometry_msgs::Point32 vector; 00186 double max_dist; 00187 geometry_msgs::Pose pose; 00188 00189 double score = getFitScoreAndGradient<PointCloudType>(cloud, location, vector, max_dist); 00190 double old_score = score + 1; 00191 00192 double EPS = 1.0e-6; 00193 int max_iterations = 100; 00194 int iter = 0; 00195 while (score < old_score - EPS && iter < max_iterations) 00196 { 00197 old_score = score; 00198 location.x -= vector.x; 00199 location.y -= vector.y; 00200 // see above comment on search along z 00201 // location.z -= vector.z; 00202 score = getFitScoreAndGradient<PointCloudType>(cloud, location, vector, max_dist); 00203 iter++; 00204 } 00205 00206 if (iter == max_iterations) 00207 { 00208 ROS_WARN("Maximum iterations reached in model fitter"); 00209 } 00210 00211 pose.position.x = location.x; 00212 pose.position.y = location.y; 00213 pose.position.z = location.z; 00214 pose.orientation.x = 0; 00215 pose.orientation.y = 0; 00216 pose.orientation.z = 0; 00217 pose.orientation.w = 1; 00218 00219 return ModelFitInfo(model_id_, pose, old_score); 00220 } 00221 00222 } //namespace