00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/GraspableObject.h"
00014 #include "object_manipulation_msgs/Grasp.h"
00015 #include "object_manipulation_msgs/GripperTranslation.h"
00016 #include "motion_planning_msgs/Constraints.h"
00017 #include "motion_planning_msgs/OrderedCollisionOperations.h"
00018 #include "motion_planning_msgs/LinkPadding.h"
00019
00020 namespace object_manipulation_msgs
00021 {
00022 template <class ContainerAllocator>
00023 struct PickupGoal_ : public ros::Message
00024 {
00025 typedef PickupGoal_<ContainerAllocator> Type;
00026
00027 PickupGoal_()
00028 : arm_name()
00029 , target()
00030 , desired_grasps()
00031 , desired_approach_distance(0.0)
00032 , min_approach_distance(0.0)
00033 , lift()
00034 , collision_object_name()
00035 , collision_support_surface_name()
00036 , allow_gripper_support_collision(false)
00037 , use_reactive_execution(false)
00038 , use_reactive_lift(false)
00039 , path_constraints()
00040 , additional_collision_operations()
00041 , additional_link_padding()
00042 {
00043 }
00044
00045 PickupGoal_(const ContainerAllocator& _alloc)
00046 : arm_name(_alloc)
00047 , target(_alloc)
00048 , desired_grasps(_alloc)
00049 , desired_approach_distance(0.0)
00050 , min_approach_distance(0.0)
00051 , lift(_alloc)
00052 , collision_object_name(_alloc)
00053 , collision_support_surface_name(_alloc)
00054 , allow_gripper_support_collision(false)
00055 , use_reactive_execution(false)
00056 , use_reactive_lift(false)
00057 , path_constraints(_alloc)
00058 , additional_collision_operations(_alloc)
00059 , additional_link_padding(_alloc)
00060 {
00061 }
00062
00063 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00064 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00065
00066 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00067 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00068
00069 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _desired_grasps_type;
00070 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > desired_grasps;
00071
00072 typedef float _desired_approach_distance_type;
00073 float desired_approach_distance;
00074
00075 typedef float _min_approach_distance_type;
00076 float min_approach_distance;
00077
00078 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type;
00079 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift;
00080
00081 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00082 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00083
00084 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00085 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00086
00087 typedef uint8_t _allow_gripper_support_collision_type;
00088 uint8_t allow_gripper_support_collision;
00089
00090 typedef uint8_t _use_reactive_execution_type;
00091 uint8_t use_reactive_execution;
00092
00093 typedef uint8_t _use_reactive_lift_type;
00094 uint8_t use_reactive_lift;
00095
00096 typedef ::motion_planning_msgs::Constraints_<ContainerAllocator> _path_constraints_type;
00097 ::motion_planning_msgs::Constraints_<ContainerAllocator> path_constraints;
00098
00099 typedef ::motion_planning_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type;
00100 ::motion_planning_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations;
00101
00102 typedef std::vector< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type;
00103 std::vector< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding;
00104
00105
00106 ROS_DEPRECATED uint32_t get_desired_grasps_size() const { return (uint32_t)desired_grasps.size(); }
00107 ROS_DEPRECATED void set_desired_grasps_size(uint32_t size) { desired_grasps.resize((size_t)size); }
00108 ROS_DEPRECATED void get_desired_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->desired_grasps; }
00109 ROS_DEPRECATED void set_desired_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->desired_grasps = vec; }
00110 ROS_DEPRECATED uint32_t get_additional_link_padding_size() const { return (uint32_t)additional_link_padding.size(); }
00111 ROS_DEPRECATED void set_additional_link_padding_size(uint32_t size) { additional_link_padding.resize((size_t)size); }
00112 ROS_DEPRECATED void get_additional_link_padding_vec(std::vector< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) const { vec = this->additional_link_padding; }
00113 ROS_DEPRECATED void set_additional_link_padding_vec(const std::vector< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) { this->additional_link_padding = vec; }
00114 private:
00115 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupGoal"; }
00116 public:
00117 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00118
00119 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00120
00121 private:
00122 static const char* __s_getMD5Sum_() { return "a8be99f32590dd806e837f3c886b631e"; }
00123 public:
00124 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00125
00126 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00127
00128 private:
00129 static const char* __s_getMessageDefinition_() { return "# An action for picking up an object\n\
00130 \n\
00131 # which arm to be used for grasping\n\
00132 string arm_name\n\
00133 \n\
00134 # the object to be grasped\n\
00135 GraspableObject target\n\
00136 \n\
00137 # a list of grasps to be used\n\
00138 # if empty, the grasp executive will call one of its own planners\n\
00139 Grasp[] desired_grasps\n\
00140 \n\
00141 # how far the pre-grasp should ideally be away from the grasp\n\
00142 float32 desired_approach_distance\n\
00143 \n\
00144 # how much distance between pre-grasp and grasp must actually be feasible \n\
00145 # for the grasp not to be rejected\n\
00146 float32 min_approach_distance\n\
00147 \n\
00148 # how the object should be lifted after the grasp\n\
00149 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00150 # or the gripper_frame specified in your hand description file\n\
00151 GripperTranslation lift\n\
00152 \n\
00153 # the name that the target object has in the collision map\n\
00154 # can be left empty if no name is available\n\
00155 string collision_object_name\n\
00156 \n\
00157 # the name that the support surface (e.g. table) has in the collision map\n\
00158 # can be left empty if no name is available\n\
00159 string collision_support_surface_name\n\
00160 \n\
00161 # whether collisions between the gripper and the support surface should be acceptable\n\
00162 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00163 # pre-grasp location are still not allowed even if this is set to true.\n\
00164 bool allow_gripper_support_collision\n\
00165 \n\
00166 # whether reactive grasp execution using tactile sensors should be used\n\
00167 bool use_reactive_execution\n\
00168 \n\
00169 # whether reactive object lifting based on tactile sensors should be used\n\
00170 bool use_reactive_lift\n\
00171 \n\
00172 # OPTIONAL (These will not have to be filled out most of the time)\n\
00173 # constraints to be imposed on every point in the motion of the arm\n\
00174 motion_planning_msgs/Constraints path_constraints\n\
00175 \n\
00176 # OPTIONAL (These will not have to be filled out most of the time)\n\
00177 # additional collision operations to be used for every arm movement performed\n\
00178 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00179 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00180 # with care and only if special behaviors are desired\n\
00181 motion_planning_msgs/OrderedCollisionOperations additional_collision_operations\n\
00182 \n\
00183 # OPTIONAL (These will not have to be filled out most of the time)\n\
00184 # additional link paddings to be used for every arm movement performed\n\
00185 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00186 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00187 # with care and only if special behaviors are desired\n\
00188 motion_planning_msgs/LinkPadding[] additional_link_padding\n\
00189 ================================================================================\n\
00190 MSG: object_manipulation_msgs/GraspableObject\n\
00191 # an object that the object_manipulator can work on\n\
00192 \n\
00193 # a graspable object can be represented in multiple ways. This message\n\
00194 # can contain all of them. Which one is actually used is up to the receiver\n\
00195 # of this message. When adding new representations, one must be careful that\n\
00196 # they have reasonable lightweight defaults indicating that that particular\n\
00197 # representation is not available.\n\
00198 \n\
00199 # the tf frame to be used as a reference frame when combining information from\n\
00200 # the different representations below\n\
00201 string reference_frame_id\n\
00202 \n\
00203 # potential recognition results from a database of models\n\
00204 # all poses are relative to the object reference pose\n\
00205 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00206 \n\
00207 # the point cloud itself\n\
00208 sensor_msgs/PointCloud cluster\n\
00209 \n\
00210 # a region of a PointCloud2 of interest\n\
00211 object_manipulation_msgs/SceneRegion region\n\
00212 \n\
00213 \n\
00214 ================================================================================\n\
00215 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00216 # Informs that a specific model from the Model Database has been \n\
00217 # identified at a certain location\n\
00218 \n\
00219 # the database id of the model\n\
00220 int32 model_id\n\
00221 \n\
00222 # the pose that it can be found in\n\
00223 geometry_msgs/PoseStamped pose\n\
00224 \n\
00225 # a measure of the confidence level in this detection result\n\
00226 float32 confidence\n\
00227 ================================================================================\n\
00228 MSG: geometry_msgs/PoseStamped\n\
00229 # A Pose with reference coordinate frame and timestamp\n\
00230 Header header\n\
00231 Pose pose\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: std_msgs/Header\n\
00235 # Standard metadata for higher-level stamped data types.\n\
00236 # This is generally used to communicate timestamped data \n\
00237 # in a particular coordinate frame.\n\
00238 # \n\
00239 # sequence ID: consecutively increasing ID \n\
00240 uint32 seq\n\
00241 #Two-integer timestamp that is expressed as:\n\
00242 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00243 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00244 # time-handling sugar is provided by the client library\n\
00245 time stamp\n\
00246 #Frame this data is associated with\n\
00247 # 0: no frame\n\
00248 # 1: global frame\n\
00249 string frame_id\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/Pose\n\
00253 # A representation of pose in free space, composed of postion and orientation. \n\
00254 Point position\n\
00255 Quaternion orientation\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Point\n\
00259 # This contains the position of a point in free space\n\
00260 float64 x\n\
00261 float64 y\n\
00262 float64 z\n\
00263 \n\
00264 ================================================================================\n\
00265 MSG: geometry_msgs/Quaternion\n\
00266 # This represents an orientation in free space in quaternion form.\n\
00267 \n\
00268 float64 x\n\
00269 float64 y\n\
00270 float64 z\n\
00271 float64 w\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/PointCloud\n\
00275 # This message holds a collection of 3d points, plus optional additional\n\
00276 # information about each point.\n\
00277 \n\
00278 # Time of sensor data acquisition, coordinate frame ID.\n\
00279 Header header\n\
00280 \n\
00281 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00282 # in the frame given in the header.\n\
00283 geometry_msgs/Point32[] points\n\
00284 \n\
00285 # Each channel should have the same number of elements as points array,\n\
00286 # and the data in each channel should correspond 1:1 with each point.\n\
00287 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00288 ChannelFloat32[] channels\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: geometry_msgs/Point32\n\
00292 # This contains the position of a point in free space(with 32 bits of precision).\n\
00293 # It is recommeded to use Point wherever possible instead of Point32. \n\
00294 # \n\
00295 # This recommendation is to promote interoperability. \n\
00296 #\n\
00297 # This message is designed to take up less space when sending\n\
00298 # lots of points at once, as in the case of a PointCloud. \n\
00299 \n\
00300 float32 x\n\
00301 float32 y\n\
00302 float32 z\n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/ChannelFloat32\n\
00305 # This message is used by the PointCloud message to hold optional data\n\
00306 # associated with each point in the cloud. The length of the values\n\
00307 # array should be the same as the length of the points array in the\n\
00308 # PointCloud, and each value should be associated with the corresponding\n\
00309 # point.\n\
00310 \n\
00311 # Channel names in existing practice include:\n\
00312 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00313 # This is opposite to usual conventions but remains for\n\
00314 # historical reasons. The newer PointCloud2 message has no\n\
00315 # such problem.\n\
00316 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00317 # (R,G,B) values packed into the least significant 24 bits,\n\
00318 # in order.\n\
00319 # \"intensity\" - laser or pixel intensity.\n\
00320 # \"distance\"\n\
00321 \n\
00322 # The channel name should give semantics of the channel (e.g.\n\
00323 # \"intensity\" instead of \"value\").\n\
00324 string name\n\
00325 \n\
00326 # The values array should be 1-1 with the elements of the associated\n\
00327 # PointCloud.\n\
00328 float32[] values\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: object_manipulation_msgs/SceneRegion\n\
00332 # Point cloud\n\
00333 sensor_msgs/PointCloud2 cloud\n\
00334 \n\
00335 # Indices for the region of interest\n\
00336 int32[] mask\n\
00337 \n\
00338 # One of the corresponding 2D images, if applicable\n\
00339 sensor_msgs/Image image\n\
00340 \n\
00341 # The disparity image, if applicable\n\
00342 sensor_msgs/Image disparity_image\n\
00343 \n\
00344 # Camera info for the camera that took the image\n\
00345 sensor_msgs/CameraInfo cam_info\n\
00346 \n\
00347 ================================================================================\n\
00348 MSG: sensor_msgs/PointCloud2\n\
00349 # This message holds a collection of N-dimensional points, which may\n\
00350 # contain additional information such as normals, intensity, etc. The\n\
00351 # point data is stored as a binary blob, its layout described by the\n\
00352 # contents of the \"fields\" array.\n\
00353 \n\
00354 # The point cloud data may be organized 2d (image-like) or 1d\n\
00355 # (unordered). Point clouds organized as 2d images may be produced by\n\
00356 # camera depth sensors such as stereo or time-of-flight.\n\
00357 \n\
00358 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00359 # points).\n\
00360 Header header\n\
00361 \n\
00362 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00363 # 1 and width is the length of the point cloud.\n\
00364 uint32 height\n\
00365 uint32 width\n\
00366 \n\
00367 # Describes the channels and their layout in the binary data blob.\n\
00368 PointField[] fields\n\
00369 \n\
00370 bool is_bigendian # Is this data bigendian?\n\
00371 uint32 point_step # Length of a point in bytes\n\
00372 uint32 row_step # Length of a row in bytes\n\
00373 uint8[] data # Actual point data, size is (row_step*height)\n\
00374 \n\
00375 bool is_dense # True if there are no invalid points\n\
00376 \n\
00377 ================================================================================\n\
00378 MSG: sensor_msgs/PointField\n\
00379 # This message holds the description of one point entry in the\n\
00380 # PointCloud2 message format.\n\
00381 uint8 INT8 = 1\n\
00382 uint8 UINT8 = 2\n\
00383 uint8 INT16 = 3\n\
00384 uint8 UINT16 = 4\n\
00385 uint8 INT32 = 5\n\
00386 uint8 UINT32 = 6\n\
00387 uint8 FLOAT32 = 7\n\
00388 uint8 FLOAT64 = 8\n\
00389 \n\
00390 string name # Name of field\n\
00391 uint32 offset # Offset from start of point struct\n\
00392 uint8 datatype # Datatype enumeration, see above\n\
00393 uint32 count # How many elements in the field\n\
00394 \n\
00395 ================================================================================\n\
00396 MSG: sensor_msgs/Image\n\
00397 # This message contains an uncompressed image\n\
00398 # (0, 0) is at top-left corner of image\n\
00399 #\n\
00400 \n\
00401 Header header # Header timestamp should be acquisition time of image\n\
00402 # Header frame_id should be optical frame of camera\n\
00403 # origin of frame should be optical center of cameara\n\
00404 # +x should point to the right in the image\n\
00405 # +y should point down in the image\n\
00406 # +z should point into to plane of the image\n\
00407 # If the frame_id here and the frame_id of the CameraInfo\n\
00408 # message associated with the image conflict\n\
00409 # the behavior is undefined\n\
00410 \n\
00411 uint32 height # image height, that is, number of rows\n\
00412 uint32 width # image width, that is, number of columns\n\
00413 \n\
00414 # The legal values for encoding are in file src/image_encodings.cpp\n\
00415 # If you want to standardize a new string format, join\n\
00416 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00417 \n\
00418 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00419 # taken from the list of strings in src/image_encodings.cpp\n\
00420 \n\
00421 uint8 is_bigendian # is this data bigendian?\n\
00422 uint32 step # Full row length in bytes\n\
00423 uint8[] data # actual matrix data, size is (step * rows)\n\
00424 \n\
00425 ================================================================================\n\
00426 MSG: sensor_msgs/CameraInfo\n\
00427 # This message defines meta information for a camera. It should be in a\n\
00428 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00429 # image topics named:\n\
00430 #\n\
00431 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00432 # image - monochrome, distorted\n\
00433 # image_color - color, distorted\n\
00434 # image_rect - monochrome, rectified\n\
00435 # image_rect_color - color, rectified\n\
00436 #\n\
00437 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00438 # for producing the four processed image topics from image_raw and\n\
00439 # camera_info. The meaning of the camera parameters are described in\n\
00440 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00441 #\n\
00442 # The image_geometry package provides a user-friendly interface to\n\
00443 # common operations using this meta information. If you want to, e.g.,\n\
00444 # project a 3d point into image coordinates, we strongly recommend\n\
00445 # using image_geometry.\n\
00446 #\n\
00447 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00448 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00449 # indicates an uncalibrated camera.\n\
00450 \n\
00451 #######################################################################\n\
00452 # Image acquisition info #\n\
00453 #######################################################################\n\
00454 \n\
00455 # Time of image acquisition, camera coordinate frame ID\n\
00456 Header header # Header timestamp should be acquisition time of image\n\
00457 # Header frame_id should be optical frame of camera\n\
00458 # origin of frame should be optical center of camera\n\
00459 # +x should point to the right in the image\n\
00460 # +y should point down in the image\n\
00461 # +z should point into the plane of the image\n\
00462 \n\
00463 \n\
00464 #######################################################################\n\
00465 # Calibration Parameters #\n\
00466 #######################################################################\n\
00467 # These are fixed during camera calibration. Their values will be the #\n\
00468 # same in all messages until the camera is recalibrated. Note that #\n\
00469 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00470 # #\n\
00471 # The internal parameters can be used to warp a raw (distorted) image #\n\
00472 # to: #\n\
00473 # 1. An undistorted image (requires D and K) #\n\
00474 # 2. A rectified image (requires D, K, R) #\n\
00475 # The projection matrix P projects 3D points into the rectified image.#\n\
00476 #######################################################################\n\
00477 \n\
00478 # The image dimensions with which the camera was calibrated. Normally\n\
00479 # this will be the full camera resolution in pixels.\n\
00480 uint32 height\n\
00481 uint32 width\n\
00482 \n\
00483 # The distortion model used. Supported models are listed in\n\
00484 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00485 # simple model of radial and tangential distortion - is sufficent.\n\
00486 string distortion_model\n\
00487 \n\
00488 # The distortion parameters, size depending on the distortion model.\n\
00489 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00490 float64[] D\n\
00491 \n\
00492 # Intrinsic camera matrix for the raw (distorted) images.\n\
00493 # [fx 0 cx]\n\
00494 # K = [ 0 fy cy]\n\
00495 # [ 0 0 1]\n\
00496 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00497 # coordinates using the focal lengths (fx, fy) and principal point\n\
00498 # (cx, cy).\n\
00499 float64[9] K # 3x3 row-major matrix\n\
00500 \n\
00501 # Rectification matrix (stereo cameras only)\n\
00502 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00503 # stereo image plane so that epipolar lines in both stereo images are\n\
00504 # parallel.\n\
00505 float64[9] R # 3x3 row-major matrix\n\
00506 \n\
00507 # Projection/camera matrix\n\
00508 # [fx' 0 cx' Tx]\n\
00509 # P = [ 0 fy' cy' Ty]\n\
00510 # [ 0 0 1 0]\n\
00511 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00512 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00513 # is the normal camera intrinsic matrix for the rectified image.\n\
00514 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00515 # coordinates using the focal lengths (fx', fy') and principal point\n\
00516 # (cx', cy') - these may differ from the values in K.\n\
00517 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00518 # also have R = the identity and P[1:3,1:3] = K.\n\
00519 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00520 # position of the optical center of the second camera in the first\n\
00521 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00522 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00523 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00524 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00525 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00526 # the rectified image is given by:\n\
00527 # [u v w]' = P * [X Y Z 1]'\n\
00528 # x = u / w\n\
00529 # y = v / w\n\
00530 # This holds for both images of a stereo pair.\n\
00531 float64[12] P # 3x4 row-major matrix\n\
00532 \n\
00533 \n\
00534 #######################################################################\n\
00535 # Operational Parameters #\n\
00536 #######################################################################\n\
00537 # These define the image region actually captured by the camera #\n\
00538 # driver. Although they affect the geometry of the output image, they #\n\
00539 # may be changed freely without recalibrating the camera. #\n\
00540 #######################################################################\n\
00541 \n\
00542 # Binning refers here to any camera setting which combines rectangular\n\
00543 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00544 # resolution of the output image to\n\
00545 # (width / binning_x) x (height / binning_y).\n\
00546 # The default values binning_x = binning_y = 0 is considered the same\n\
00547 # as binning_x = binning_y = 1 (no subsampling).\n\
00548 uint32 binning_x\n\
00549 uint32 binning_y\n\
00550 \n\
00551 # Region of interest (subwindow of full camera resolution), given in\n\
00552 # full resolution (unbinned) image coordinates. A particular ROI\n\
00553 # always denotes the same window of pixels on the camera sensor,\n\
00554 # regardless of binning settings.\n\
00555 # The default setting of roi (all values 0) is considered the same as\n\
00556 # full resolution (roi.width = width, roi.height = height).\n\
00557 RegionOfInterest roi\n\
00558 \n\
00559 ================================================================================\n\
00560 MSG: sensor_msgs/RegionOfInterest\n\
00561 # This message is used to specify a region of interest within an image.\n\
00562 #\n\
00563 # When used to specify the ROI setting of the camera when the image was\n\
00564 # taken, the height and width fields should either match the height and\n\
00565 # width fields for the associated image; or height = width = 0\n\
00566 # indicates that the full resolution image was captured.\n\
00567 \n\
00568 uint32 x_offset # Leftmost pixel of the ROI\n\
00569 # (0 if the ROI includes the left edge of the image)\n\
00570 uint32 y_offset # Topmost pixel of the ROI\n\
00571 # (0 if the ROI includes the top edge of the image)\n\
00572 uint32 height # Height of ROI\n\
00573 uint32 width # Width of ROI\n\
00574 \n\
00575 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00576 # ROI in this message. Typically this should be False if the full image\n\
00577 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00578 # used).\n\
00579 bool do_rectify\n\
00580 \n\
00581 ================================================================================\n\
00582 MSG: object_manipulation_msgs/Grasp\n\
00583 \n\
00584 # The internal posture of the hand for the pre-grasp\n\
00585 # only positions are used\n\
00586 sensor_msgs/JointState pre_grasp_posture\n\
00587 \n\
00588 # The internal posture of the hand for the grasp\n\
00589 # positions and efforts are used\n\
00590 sensor_msgs/JointState grasp_posture\n\
00591 \n\
00592 # The position of the end-effector for the grasp relative to the object\n\
00593 geometry_msgs/Pose grasp_pose\n\
00594 \n\
00595 # The estimated probability of success for this grasp\n\
00596 float64 success_probability\n\
00597 \n\
00598 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00599 bool cluster_rep\n\
00600 ================================================================================\n\
00601 MSG: sensor_msgs/JointState\n\
00602 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00603 #\n\
00604 # The state of each joint (revolute or prismatic) is defined by:\n\
00605 # * the position of the joint (rad or m),\n\
00606 # * the velocity of the joint (rad/s or m/s) and \n\
00607 # * the effort that is applied in the joint (Nm or N).\n\
00608 #\n\
00609 # Each joint is uniquely identified by its name\n\
00610 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00611 # in one message have to be recorded at the same time.\n\
00612 #\n\
00613 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00614 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00615 # effort associated with them, you can leave the effort array empty. \n\
00616 #\n\
00617 # All arrays in this message should have the same size, or be empty.\n\
00618 # This is the only way to uniquely associate the joint name with the correct\n\
00619 # states.\n\
00620 \n\
00621 \n\
00622 Header header\n\
00623 \n\
00624 string[] name\n\
00625 float64[] position\n\
00626 float64[] velocity\n\
00627 float64[] effort\n\
00628 \n\
00629 ================================================================================\n\
00630 MSG: object_manipulation_msgs/GripperTranslation\n\
00631 # defines a translation for the gripper, used in pickup or place tasks\n\
00632 # for example for lifting an object off a table or approaching the table for placing\n\
00633 \n\
00634 # the direction of the translation\n\
00635 geometry_msgs/Vector3Stamped direction\n\
00636 \n\
00637 # the desired translation distance\n\
00638 float32 desired_distance\n\
00639 \n\
00640 # the min distance that must be considered feasible before the\n\
00641 # grasp is even attempted\n\
00642 float32 min_distance\n\
00643 ================================================================================\n\
00644 MSG: geometry_msgs/Vector3Stamped\n\
00645 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00646 Header header\n\
00647 Vector3 vector\n\
00648 \n\
00649 ================================================================================\n\
00650 MSG: geometry_msgs/Vector3\n\
00651 # This represents a vector in free space. \n\
00652 \n\
00653 float64 x\n\
00654 float64 y\n\
00655 float64 z\n\
00656 ================================================================================\n\
00657 MSG: motion_planning_msgs/Constraints\n\
00658 # This message contains a list of motion planning constraints.\n\
00659 \n\
00660 motion_planning_msgs/JointConstraint[] joint_constraints\n\
00661 motion_planning_msgs/PositionConstraint[] position_constraints\n\
00662 motion_planning_msgs/OrientationConstraint[] orientation_constraints\n\
00663 motion_planning_msgs/VisibilityConstraint[] visibility_constraints\n\
00664 \n\
00665 ================================================================================\n\
00666 MSG: motion_planning_msgs/JointConstraint\n\
00667 # Constrain the position of a joint to be within a certain bound\n\
00668 string joint_name\n\
00669 \n\
00670 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00671 float64 position\n\
00672 float64 tolerance_above\n\
00673 float64 tolerance_below\n\
00674 \n\
00675 # A weighting factor for this constraint\n\
00676 float64 weight\n\
00677 ================================================================================\n\
00678 MSG: motion_planning_msgs/PositionConstraint\n\
00679 # This message contains the definition of a position constraint.\n\
00680 Header header\n\
00681 \n\
00682 # The robot link this constraint refers to\n\
00683 string link_name\n\
00684 \n\
00685 # The offset (in the link frame) for the target point on the link we are planning for\n\
00686 geometry_msgs/Point target_point_offset\n\
00687 \n\
00688 # The nominal/target position for the point we are planning for\n\
00689 geometry_msgs/Point position\n\
00690 \n\
00691 # The shape of the bounded region that constrains the position of the end-effector\n\
00692 # This region is always centered at the position defined above\n\
00693 geometric_shapes_msgs/Shape constraint_region_shape\n\
00694 \n\
00695 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00696 # This allows the specification of non-axis aligned constraints\n\
00697 geometry_msgs/Quaternion constraint_region_orientation\n\
00698 \n\
00699 # Constraint weighting factor - a weight for this constraint\n\
00700 float64 weight\n\
00701 ================================================================================\n\
00702 MSG: geometric_shapes_msgs/Shape\n\
00703 byte SPHERE=0\n\
00704 byte BOX=1\n\
00705 byte CYLINDER=2\n\
00706 byte MESH=3\n\
00707 \n\
00708 byte type\n\
00709 \n\
00710 \n\
00711 #### define sphere, box, cylinder ####\n\
00712 # the origin of each shape is considered at the shape's center\n\
00713 \n\
00714 # for sphere\n\
00715 # radius := dimensions[0]\n\
00716 \n\
00717 # for cylinder\n\
00718 # radius := dimensions[0]\n\
00719 # length := dimensions[1]\n\
00720 # the length is along the Z axis\n\
00721 \n\
00722 # for box\n\
00723 # size_x := dimensions[0]\n\
00724 # size_y := dimensions[1]\n\
00725 # size_z := dimensions[2]\n\
00726 float64[] dimensions\n\
00727 \n\
00728 \n\
00729 #### define mesh ####\n\
00730 \n\
00731 # list of triangles; triangle k is defined by tre vertices located\n\
00732 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00733 int32[] triangles\n\
00734 geometry_msgs/Point[] vertices\n\
00735 \n\
00736 ================================================================================\n\
00737 MSG: motion_planning_msgs/OrientationConstraint\n\
00738 # This message contains the definition of an orientation constraint.\n\
00739 Header header\n\
00740 \n\
00741 # The robot link this constraint refers to\n\
00742 string link_name\n\
00743 \n\
00744 # The type of the constraint\n\
00745 int32 type\n\
00746 int32 LINK_FRAME=0\n\
00747 int32 HEADER_FRAME=1\n\
00748 \n\
00749 # The desired orientation of the robot link specified as a quaternion\n\
00750 geometry_msgs/Quaternion orientation\n\
00751 \n\
00752 # optional RPY error tolerances specified if \n\
00753 float64 absolute_roll_tolerance\n\
00754 float64 absolute_pitch_tolerance\n\
00755 float64 absolute_yaw_tolerance\n\
00756 \n\
00757 # Constraint weighting factor - a weight for this constraint\n\
00758 float64 weight\n\
00759 \n\
00760 ================================================================================\n\
00761 MSG: motion_planning_msgs/VisibilityConstraint\n\
00762 # This message contains the definition of a visibility constraint.\n\
00763 Header header\n\
00764 \n\
00765 # The point stamped target that needs to be kept within view of the sensor\n\
00766 geometry_msgs/PointStamped target\n\
00767 \n\
00768 # The local pose of the frame in which visibility is to be maintained\n\
00769 # The frame id should represent the robot link to which the sensor is attached\n\
00770 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00771 geometry_msgs/PoseStamped sensor_pose\n\
00772 \n\
00773 # The deviation (in radians) that will be tolerated\n\
00774 # Constraint error will be measured as the solid angle between the \n\
00775 # X axis of the frame defined above and the vector between the origin \n\
00776 # of the frame defined above and the target location\n\
00777 float64 absolute_tolerance\n\
00778 \n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: geometry_msgs/PointStamped\n\
00782 # This represents a Point with reference coordinate frame and timestamp\n\
00783 Header header\n\
00784 Point point\n\
00785 \n\
00786 ================================================================================\n\
00787 MSG: motion_planning_msgs/OrderedCollisionOperations\n\
00788 # A set of collision operations that will be performed in the order they are specified\n\
00789 CollisionOperation[] collision_operations\n\
00790 ================================================================================\n\
00791 MSG: motion_planning_msgs/CollisionOperation\n\
00792 # A definition of a collision operation\n\
00793 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00794 # between the gripper and all objects in the collision space\n\
00795 \n\
00796 string object1\n\
00797 string object2\n\
00798 string COLLISION_SET_ALL=\"all\"\n\
00799 string COLLISION_SET_OBJECTS=\"objects\"\n\
00800 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00801 \n\
00802 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00803 float64 penetration_distance\n\
00804 \n\
00805 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00806 int32 operation\n\
00807 int32 DISABLE=0\n\
00808 int32 ENABLE=1\n\
00809 \n\
00810 ================================================================================\n\
00811 MSG: motion_planning_msgs/LinkPadding\n\
00812 #name for the link\n\
00813 string link_name\n\
00814 \n\
00815 # padding to apply to the link\n\
00816 float64 padding\n\
00817 \n\
00818 "; }
00819 public:
00820 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00821
00822 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00823
00824 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00825 {
00826 ros::serialization::OStream stream(write_ptr, 1000000000);
00827 ros::serialization::serialize(stream, arm_name);
00828 ros::serialization::serialize(stream, target);
00829 ros::serialization::serialize(stream, desired_grasps);
00830 ros::serialization::serialize(stream, desired_approach_distance);
00831 ros::serialization::serialize(stream, min_approach_distance);
00832 ros::serialization::serialize(stream, lift);
00833 ros::serialization::serialize(stream, collision_object_name);
00834 ros::serialization::serialize(stream, collision_support_surface_name);
00835 ros::serialization::serialize(stream, allow_gripper_support_collision);
00836 ros::serialization::serialize(stream, use_reactive_execution);
00837 ros::serialization::serialize(stream, use_reactive_lift);
00838 ros::serialization::serialize(stream, path_constraints);
00839 ros::serialization::serialize(stream, additional_collision_operations);
00840 ros::serialization::serialize(stream, additional_link_padding);
00841 return stream.getData();
00842 }
00843
00844 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00845 {
00846 ros::serialization::IStream stream(read_ptr, 1000000000);
00847 ros::serialization::deserialize(stream, arm_name);
00848 ros::serialization::deserialize(stream, target);
00849 ros::serialization::deserialize(stream, desired_grasps);
00850 ros::serialization::deserialize(stream, desired_approach_distance);
00851 ros::serialization::deserialize(stream, min_approach_distance);
00852 ros::serialization::deserialize(stream, lift);
00853 ros::serialization::deserialize(stream, collision_object_name);
00854 ros::serialization::deserialize(stream, collision_support_surface_name);
00855 ros::serialization::deserialize(stream, allow_gripper_support_collision);
00856 ros::serialization::deserialize(stream, use_reactive_execution);
00857 ros::serialization::deserialize(stream, use_reactive_lift);
00858 ros::serialization::deserialize(stream, path_constraints);
00859 ros::serialization::deserialize(stream, additional_collision_operations);
00860 ros::serialization::deserialize(stream, additional_link_padding);
00861 return stream.getData();
00862 }
00863
00864 ROS_DEPRECATED virtual uint32_t serializationLength() const
00865 {
00866 uint32_t size = 0;
00867 size += ros::serialization::serializationLength(arm_name);
00868 size += ros::serialization::serializationLength(target);
00869 size += ros::serialization::serializationLength(desired_grasps);
00870 size += ros::serialization::serializationLength(desired_approach_distance);
00871 size += ros::serialization::serializationLength(min_approach_distance);
00872 size += ros::serialization::serializationLength(lift);
00873 size += ros::serialization::serializationLength(collision_object_name);
00874 size += ros::serialization::serializationLength(collision_support_surface_name);
00875 size += ros::serialization::serializationLength(allow_gripper_support_collision);
00876 size += ros::serialization::serializationLength(use_reactive_execution);
00877 size += ros::serialization::serializationLength(use_reactive_lift);
00878 size += ros::serialization::serializationLength(path_constraints);
00879 size += ros::serialization::serializationLength(additional_collision_operations);
00880 size += ros::serialization::serializationLength(additional_link_padding);
00881 return size;
00882 }
00883
00884 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > Ptr;
00885 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> ConstPtr;
00886 };
00887 typedef ::object_manipulation_msgs::PickupGoal_<std::allocator<void> > PickupGoal;
00888
00889 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal> PickupGoalPtr;
00890 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal const> PickupGoalConstPtr;
00891
00892
00893 template<typename ContainerAllocator>
00894 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v)
00895 {
00896 ros::message_operations::Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, "", v);
00897 return s;}
00898
00899 }
00900
00901 namespace ros
00902 {
00903 namespace message_traits
00904 {
00905 template<class ContainerAllocator>
00906 struct MD5Sum< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00907 static const char* value()
00908 {
00909 return "a8be99f32590dd806e837f3c886b631e";
00910 }
00911
00912 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00913 static const uint64_t static_value1 = 0xa8be99f32590dd80ULL;
00914 static const uint64_t static_value2 = 0x6e837f3c886b631eULL;
00915 };
00916
00917 template<class ContainerAllocator>
00918 struct DataType< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00919 static const char* value()
00920 {
00921 return "object_manipulation_msgs/PickupGoal";
00922 }
00923
00924 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00925 };
00926
00927 template<class ContainerAllocator>
00928 struct Definition< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00929 static const char* value()
00930 {
00931 return "# An action for picking up an object\n\
00932 \n\
00933 # which arm to be used for grasping\n\
00934 string arm_name\n\
00935 \n\
00936 # the object to be grasped\n\
00937 GraspableObject target\n\
00938 \n\
00939 # a list of grasps to be used\n\
00940 # if empty, the grasp executive will call one of its own planners\n\
00941 Grasp[] desired_grasps\n\
00942 \n\
00943 # how far the pre-grasp should ideally be away from the grasp\n\
00944 float32 desired_approach_distance\n\
00945 \n\
00946 # how much distance between pre-grasp and grasp must actually be feasible \n\
00947 # for the grasp not to be rejected\n\
00948 float32 min_approach_distance\n\
00949 \n\
00950 # how the object should be lifted after the grasp\n\
00951 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00952 # or the gripper_frame specified in your hand description file\n\
00953 GripperTranslation lift\n\
00954 \n\
00955 # the name that the target object has in the collision map\n\
00956 # can be left empty if no name is available\n\
00957 string collision_object_name\n\
00958 \n\
00959 # the name that the support surface (e.g. table) has in the collision map\n\
00960 # can be left empty if no name is available\n\
00961 string collision_support_surface_name\n\
00962 \n\
00963 # whether collisions between the gripper and the support surface should be acceptable\n\
00964 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00965 # pre-grasp location are still not allowed even if this is set to true.\n\
00966 bool allow_gripper_support_collision\n\
00967 \n\
00968 # whether reactive grasp execution using tactile sensors should be used\n\
00969 bool use_reactive_execution\n\
00970 \n\
00971 # whether reactive object lifting based on tactile sensors should be used\n\
00972 bool use_reactive_lift\n\
00973 \n\
00974 # OPTIONAL (These will not have to be filled out most of the time)\n\
00975 # constraints to be imposed on every point in the motion of the arm\n\
00976 motion_planning_msgs/Constraints path_constraints\n\
00977 \n\
00978 # OPTIONAL (These will not have to be filled out most of the time)\n\
00979 # additional collision operations to be used for every arm movement performed\n\
00980 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00981 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00982 # with care and only if special behaviors are desired\n\
00983 motion_planning_msgs/OrderedCollisionOperations additional_collision_operations\n\
00984 \n\
00985 # OPTIONAL (These will not have to be filled out most of the time)\n\
00986 # additional link paddings to be used for every arm movement performed\n\
00987 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00988 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00989 # with care and only if special behaviors are desired\n\
00990 motion_planning_msgs/LinkPadding[] additional_link_padding\n\
00991 ================================================================================\n\
00992 MSG: object_manipulation_msgs/GraspableObject\n\
00993 # an object that the object_manipulator can work on\n\
00994 \n\
00995 # a graspable object can be represented in multiple ways. This message\n\
00996 # can contain all of them. Which one is actually used is up to the receiver\n\
00997 # of this message. When adding new representations, one must be careful that\n\
00998 # they have reasonable lightweight defaults indicating that that particular\n\
00999 # representation is not available.\n\
01000 \n\
01001 # the tf frame to be used as a reference frame when combining information from\n\
01002 # the different representations below\n\
01003 string reference_frame_id\n\
01004 \n\
01005 # potential recognition results from a database of models\n\
01006 # all poses are relative to the object reference pose\n\
01007 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01008 \n\
01009 # the point cloud itself\n\
01010 sensor_msgs/PointCloud cluster\n\
01011 \n\
01012 # a region of a PointCloud2 of interest\n\
01013 object_manipulation_msgs/SceneRegion region\n\
01014 \n\
01015 \n\
01016 ================================================================================\n\
01017 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01018 # Informs that a specific model from the Model Database has been \n\
01019 # identified at a certain location\n\
01020 \n\
01021 # the database id of the model\n\
01022 int32 model_id\n\
01023 \n\
01024 # the pose that it can be found in\n\
01025 geometry_msgs/PoseStamped pose\n\
01026 \n\
01027 # a measure of the confidence level in this detection result\n\
01028 float32 confidence\n\
01029 ================================================================================\n\
01030 MSG: geometry_msgs/PoseStamped\n\
01031 # A Pose with reference coordinate frame and timestamp\n\
01032 Header header\n\
01033 Pose pose\n\
01034 \n\
01035 ================================================================================\n\
01036 MSG: std_msgs/Header\n\
01037 # Standard metadata for higher-level stamped data types.\n\
01038 # This is generally used to communicate timestamped data \n\
01039 # in a particular coordinate frame.\n\
01040 # \n\
01041 # sequence ID: consecutively increasing ID \n\
01042 uint32 seq\n\
01043 #Two-integer timestamp that is expressed as:\n\
01044 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01045 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01046 # time-handling sugar is provided by the client library\n\
01047 time stamp\n\
01048 #Frame this data is associated with\n\
01049 # 0: no frame\n\
01050 # 1: global frame\n\
01051 string frame_id\n\
01052 \n\
01053 ================================================================================\n\
01054 MSG: geometry_msgs/Pose\n\
01055 # A representation of pose in free space, composed of postion and orientation. \n\
01056 Point position\n\
01057 Quaternion orientation\n\
01058 \n\
01059 ================================================================================\n\
01060 MSG: geometry_msgs/Point\n\
01061 # This contains the position of a point in free space\n\
01062 float64 x\n\
01063 float64 y\n\
01064 float64 z\n\
01065 \n\
01066 ================================================================================\n\
01067 MSG: geometry_msgs/Quaternion\n\
01068 # This represents an orientation in free space in quaternion form.\n\
01069 \n\
01070 float64 x\n\
01071 float64 y\n\
01072 float64 z\n\
01073 float64 w\n\
01074 \n\
01075 ================================================================================\n\
01076 MSG: sensor_msgs/PointCloud\n\
01077 # This message holds a collection of 3d points, plus optional additional\n\
01078 # information about each point.\n\
01079 \n\
01080 # Time of sensor data acquisition, coordinate frame ID.\n\
01081 Header header\n\
01082 \n\
01083 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01084 # in the frame given in the header.\n\
01085 geometry_msgs/Point32[] points\n\
01086 \n\
01087 # Each channel should have the same number of elements as points array,\n\
01088 # and the data in each channel should correspond 1:1 with each point.\n\
01089 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01090 ChannelFloat32[] channels\n\
01091 \n\
01092 ================================================================================\n\
01093 MSG: geometry_msgs/Point32\n\
01094 # This contains the position of a point in free space(with 32 bits of precision).\n\
01095 # It is recommeded to use Point wherever possible instead of Point32. \n\
01096 # \n\
01097 # This recommendation is to promote interoperability. \n\
01098 #\n\
01099 # This message is designed to take up less space when sending\n\
01100 # lots of points at once, as in the case of a PointCloud. \n\
01101 \n\
01102 float32 x\n\
01103 float32 y\n\
01104 float32 z\n\
01105 ================================================================================\n\
01106 MSG: sensor_msgs/ChannelFloat32\n\
01107 # This message is used by the PointCloud message to hold optional data\n\
01108 # associated with each point in the cloud. The length of the values\n\
01109 # array should be the same as the length of the points array in the\n\
01110 # PointCloud, and each value should be associated with the corresponding\n\
01111 # point.\n\
01112 \n\
01113 # Channel names in existing practice include:\n\
01114 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01115 # This is opposite to usual conventions but remains for\n\
01116 # historical reasons. The newer PointCloud2 message has no\n\
01117 # such problem.\n\
01118 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01119 # (R,G,B) values packed into the least significant 24 bits,\n\
01120 # in order.\n\
01121 # \"intensity\" - laser or pixel intensity.\n\
01122 # \"distance\"\n\
01123 \n\
01124 # The channel name should give semantics of the channel (e.g.\n\
01125 # \"intensity\" instead of \"value\").\n\
01126 string name\n\
01127 \n\
01128 # The values array should be 1-1 with the elements of the associated\n\
01129 # PointCloud.\n\
01130 float32[] values\n\
01131 \n\
01132 ================================================================================\n\
01133 MSG: object_manipulation_msgs/SceneRegion\n\
01134 # Point cloud\n\
01135 sensor_msgs/PointCloud2 cloud\n\
01136 \n\
01137 # Indices for the region of interest\n\
01138 int32[] mask\n\
01139 \n\
01140 # One of the corresponding 2D images, if applicable\n\
01141 sensor_msgs/Image image\n\
01142 \n\
01143 # The disparity image, if applicable\n\
01144 sensor_msgs/Image disparity_image\n\
01145 \n\
01146 # Camera info for the camera that took the image\n\
01147 sensor_msgs/CameraInfo cam_info\n\
01148 \n\
01149 ================================================================================\n\
01150 MSG: sensor_msgs/PointCloud2\n\
01151 # This message holds a collection of N-dimensional points, which may\n\
01152 # contain additional information such as normals, intensity, etc. The\n\
01153 # point data is stored as a binary blob, its layout described by the\n\
01154 # contents of the \"fields\" array.\n\
01155 \n\
01156 # The point cloud data may be organized 2d (image-like) or 1d\n\
01157 # (unordered). Point clouds organized as 2d images may be produced by\n\
01158 # camera depth sensors such as stereo or time-of-flight.\n\
01159 \n\
01160 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01161 # points).\n\
01162 Header header\n\
01163 \n\
01164 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01165 # 1 and width is the length of the point cloud.\n\
01166 uint32 height\n\
01167 uint32 width\n\
01168 \n\
01169 # Describes the channels and their layout in the binary data blob.\n\
01170 PointField[] fields\n\
01171 \n\
01172 bool is_bigendian # Is this data bigendian?\n\
01173 uint32 point_step # Length of a point in bytes\n\
01174 uint32 row_step # Length of a row in bytes\n\
01175 uint8[] data # Actual point data, size is (row_step*height)\n\
01176 \n\
01177 bool is_dense # True if there are no invalid points\n\
01178 \n\
01179 ================================================================================\n\
01180 MSG: sensor_msgs/PointField\n\
01181 # This message holds the description of one point entry in the\n\
01182 # PointCloud2 message format.\n\
01183 uint8 INT8 = 1\n\
01184 uint8 UINT8 = 2\n\
01185 uint8 INT16 = 3\n\
01186 uint8 UINT16 = 4\n\
01187 uint8 INT32 = 5\n\
01188 uint8 UINT32 = 6\n\
01189 uint8 FLOAT32 = 7\n\
01190 uint8 FLOAT64 = 8\n\
01191 \n\
01192 string name # Name of field\n\
01193 uint32 offset # Offset from start of point struct\n\
01194 uint8 datatype # Datatype enumeration, see above\n\
01195 uint32 count # How many elements in the field\n\
01196 \n\
01197 ================================================================================\n\
01198 MSG: sensor_msgs/Image\n\
01199 # This message contains an uncompressed image\n\
01200 # (0, 0) is at top-left corner of image\n\
01201 #\n\
01202 \n\
01203 Header header # Header timestamp should be acquisition time of image\n\
01204 # Header frame_id should be optical frame of camera\n\
01205 # origin of frame should be optical center of cameara\n\
01206 # +x should point to the right in the image\n\
01207 # +y should point down in the image\n\
01208 # +z should point into to plane of the image\n\
01209 # If the frame_id here and the frame_id of the CameraInfo\n\
01210 # message associated with the image conflict\n\
01211 # the behavior is undefined\n\
01212 \n\
01213 uint32 height # image height, that is, number of rows\n\
01214 uint32 width # image width, that is, number of columns\n\
01215 \n\
01216 # The legal values for encoding are in file src/image_encodings.cpp\n\
01217 # If you want to standardize a new string format, join\n\
01218 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01219 \n\
01220 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01221 # taken from the list of strings in src/image_encodings.cpp\n\
01222 \n\
01223 uint8 is_bigendian # is this data bigendian?\n\
01224 uint32 step # Full row length in bytes\n\
01225 uint8[] data # actual matrix data, size is (step * rows)\n\
01226 \n\
01227 ================================================================================\n\
01228 MSG: sensor_msgs/CameraInfo\n\
01229 # This message defines meta information for a camera. It should be in a\n\
01230 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01231 # image topics named:\n\
01232 #\n\
01233 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01234 # image - monochrome, distorted\n\
01235 # image_color - color, distorted\n\
01236 # image_rect - monochrome, rectified\n\
01237 # image_rect_color - color, rectified\n\
01238 #\n\
01239 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01240 # for producing the four processed image topics from image_raw and\n\
01241 # camera_info. The meaning of the camera parameters are described in\n\
01242 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01243 #\n\
01244 # The image_geometry package provides a user-friendly interface to\n\
01245 # common operations using this meta information. If you want to, e.g.,\n\
01246 # project a 3d point into image coordinates, we strongly recommend\n\
01247 # using image_geometry.\n\
01248 #\n\
01249 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01250 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01251 # indicates an uncalibrated camera.\n\
01252 \n\
01253 #######################################################################\n\
01254 # Image acquisition info #\n\
01255 #######################################################################\n\
01256 \n\
01257 # Time of image acquisition, camera coordinate frame ID\n\
01258 Header header # Header timestamp should be acquisition time of image\n\
01259 # Header frame_id should be optical frame of camera\n\
01260 # origin of frame should be optical center of camera\n\
01261 # +x should point to the right in the image\n\
01262 # +y should point down in the image\n\
01263 # +z should point into the plane of the image\n\
01264 \n\
01265 \n\
01266 #######################################################################\n\
01267 # Calibration Parameters #\n\
01268 #######################################################################\n\
01269 # These are fixed during camera calibration. Their values will be the #\n\
01270 # same in all messages until the camera is recalibrated. Note that #\n\
01271 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01272 # #\n\
01273 # The internal parameters can be used to warp a raw (distorted) image #\n\
01274 # to: #\n\
01275 # 1. An undistorted image (requires D and K) #\n\
01276 # 2. A rectified image (requires D, K, R) #\n\
01277 # The projection matrix P projects 3D points into the rectified image.#\n\
01278 #######################################################################\n\
01279 \n\
01280 # The image dimensions with which the camera was calibrated. Normally\n\
01281 # this will be the full camera resolution in pixels.\n\
01282 uint32 height\n\
01283 uint32 width\n\
01284 \n\
01285 # The distortion model used. Supported models are listed in\n\
01286 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01287 # simple model of radial and tangential distortion - is sufficent.\n\
01288 string distortion_model\n\
01289 \n\
01290 # The distortion parameters, size depending on the distortion model.\n\
01291 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01292 float64[] D\n\
01293 \n\
01294 # Intrinsic camera matrix for the raw (distorted) images.\n\
01295 # [fx 0 cx]\n\
01296 # K = [ 0 fy cy]\n\
01297 # [ 0 0 1]\n\
01298 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01299 # coordinates using the focal lengths (fx, fy) and principal point\n\
01300 # (cx, cy).\n\
01301 float64[9] K # 3x3 row-major matrix\n\
01302 \n\
01303 # Rectification matrix (stereo cameras only)\n\
01304 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01305 # stereo image plane so that epipolar lines in both stereo images are\n\
01306 # parallel.\n\
01307 float64[9] R # 3x3 row-major matrix\n\
01308 \n\
01309 # Projection/camera matrix\n\
01310 # [fx' 0 cx' Tx]\n\
01311 # P = [ 0 fy' cy' Ty]\n\
01312 # [ 0 0 1 0]\n\
01313 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01314 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01315 # is the normal camera intrinsic matrix for the rectified image.\n\
01316 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01317 # coordinates using the focal lengths (fx', fy') and principal point\n\
01318 # (cx', cy') - these may differ from the values in K.\n\
01319 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01320 # also have R = the identity and P[1:3,1:3] = K.\n\
01321 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01322 # position of the optical center of the second camera in the first\n\
01323 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01324 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01325 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01326 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01327 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01328 # the rectified image is given by:\n\
01329 # [u v w]' = P * [X Y Z 1]'\n\
01330 # x = u / w\n\
01331 # y = v / w\n\
01332 # This holds for both images of a stereo pair.\n\
01333 float64[12] P # 3x4 row-major matrix\n\
01334 \n\
01335 \n\
01336 #######################################################################\n\
01337 # Operational Parameters #\n\
01338 #######################################################################\n\
01339 # These define the image region actually captured by the camera #\n\
01340 # driver. Although they affect the geometry of the output image, they #\n\
01341 # may be changed freely without recalibrating the camera. #\n\
01342 #######################################################################\n\
01343 \n\
01344 # Binning refers here to any camera setting which combines rectangular\n\
01345 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01346 # resolution of the output image to\n\
01347 # (width / binning_x) x (height / binning_y).\n\
01348 # The default values binning_x = binning_y = 0 is considered the same\n\
01349 # as binning_x = binning_y = 1 (no subsampling).\n\
01350 uint32 binning_x\n\
01351 uint32 binning_y\n\
01352 \n\
01353 # Region of interest (subwindow of full camera resolution), given in\n\
01354 # full resolution (unbinned) image coordinates. A particular ROI\n\
01355 # always denotes the same window of pixels on the camera sensor,\n\
01356 # regardless of binning settings.\n\
01357 # The default setting of roi (all values 0) is considered the same as\n\
01358 # full resolution (roi.width = width, roi.height = height).\n\
01359 RegionOfInterest roi\n\
01360 \n\
01361 ================================================================================\n\
01362 MSG: sensor_msgs/RegionOfInterest\n\
01363 # This message is used to specify a region of interest within an image.\n\
01364 #\n\
01365 # When used to specify the ROI setting of the camera when the image was\n\
01366 # taken, the height and width fields should either match the height and\n\
01367 # width fields for the associated image; or height = width = 0\n\
01368 # indicates that the full resolution image was captured.\n\
01369 \n\
01370 uint32 x_offset # Leftmost pixel of the ROI\n\
01371 # (0 if the ROI includes the left edge of the image)\n\
01372 uint32 y_offset # Topmost pixel of the ROI\n\
01373 # (0 if the ROI includes the top edge of the image)\n\
01374 uint32 height # Height of ROI\n\
01375 uint32 width # Width of ROI\n\
01376 \n\
01377 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01378 # ROI in this message. Typically this should be False if the full image\n\
01379 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01380 # used).\n\
01381 bool do_rectify\n\
01382 \n\
01383 ================================================================================\n\
01384 MSG: object_manipulation_msgs/Grasp\n\
01385 \n\
01386 # The internal posture of the hand for the pre-grasp\n\
01387 # only positions are used\n\
01388 sensor_msgs/JointState pre_grasp_posture\n\
01389 \n\
01390 # The internal posture of the hand for the grasp\n\
01391 # positions and efforts are used\n\
01392 sensor_msgs/JointState grasp_posture\n\
01393 \n\
01394 # The position of the end-effector for the grasp relative to the object\n\
01395 geometry_msgs/Pose grasp_pose\n\
01396 \n\
01397 # The estimated probability of success for this grasp\n\
01398 float64 success_probability\n\
01399 \n\
01400 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01401 bool cluster_rep\n\
01402 ================================================================================\n\
01403 MSG: sensor_msgs/JointState\n\
01404 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01405 #\n\
01406 # The state of each joint (revolute or prismatic) is defined by:\n\
01407 # * the position of the joint (rad or m),\n\
01408 # * the velocity of the joint (rad/s or m/s) and \n\
01409 # * the effort that is applied in the joint (Nm or N).\n\
01410 #\n\
01411 # Each joint is uniquely identified by its name\n\
01412 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01413 # in one message have to be recorded at the same time.\n\
01414 #\n\
01415 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01416 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01417 # effort associated with them, you can leave the effort array empty. \n\
01418 #\n\
01419 # All arrays in this message should have the same size, or be empty.\n\
01420 # This is the only way to uniquely associate the joint name with the correct\n\
01421 # states.\n\
01422 \n\
01423 \n\
01424 Header header\n\
01425 \n\
01426 string[] name\n\
01427 float64[] position\n\
01428 float64[] velocity\n\
01429 float64[] effort\n\
01430 \n\
01431 ================================================================================\n\
01432 MSG: object_manipulation_msgs/GripperTranslation\n\
01433 # defines a translation for the gripper, used in pickup or place tasks\n\
01434 # for example for lifting an object off a table or approaching the table for placing\n\
01435 \n\
01436 # the direction of the translation\n\
01437 geometry_msgs/Vector3Stamped direction\n\
01438 \n\
01439 # the desired translation distance\n\
01440 float32 desired_distance\n\
01441 \n\
01442 # the min distance that must be considered feasible before the\n\
01443 # grasp is even attempted\n\
01444 float32 min_distance\n\
01445 ================================================================================\n\
01446 MSG: geometry_msgs/Vector3Stamped\n\
01447 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01448 Header header\n\
01449 Vector3 vector\n\
01450 \n\
01451 ================================================================================\n\
01452 MSG: geometry_msgs/Vector3\n\
01453 # This represents a vector in free space. \n\
01454 \n\
01455 float64 x\n\
01456 float64 y\n\
01457 float64 z\n\
01458 ================================================================================\n\
01459 MSG: motion_planning_msgs/Constraints\n\
01460 # This message contains a list of motion planning constraints.\n\
01461 \n\
01462 motion_planning_msgs/JointConstraint[] joint_constraints\n\
01463 motion_planning_msgs/PositionConstraint[] position_constraints\n\
01464 motion_planning_msgs/OrientationConstraint[] orientation_constraints\n\
01465 motion_planning_msgs/VisibilityConstraint[] visibility_constraints\n\
01466 \n\
01467 ================================================================================\n\
01468 MSG: motion_planning_msgs/JointConstraint\n\
01469 # Constrain the position of a joint to be within a certain bound\n\
01470 string joint_name\n\
01471 \n\
01472 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01473 float64 position\n\
01474 float64 tolerance_above\n\
01475 float64 tolerance_below\n\
01476 \n\
01477 # A weighting factor for this constraint\n\
01478 float64 weight\n\
01479 ================================================================================\n\
01480 MSG: motion_planning_msgs/PositionConstraint\n\
01481 # This message contains the definition of a position constraint.\n\
01482 Header header\n\
01483 \n\
01484 # The robot link this constraint refers to\n\
01485 string link_name\n\
01486 \n\
01487 # The offset (in the link frame) for the target point on the link we are planning for\n\
01488 geometry_msgs/Point target_point_offset\n\
01489 \n\
01490 # The nominal/target position for the point we are planning for\n\
01491 geometry_msgs/Point position\n\
01492 \n\
01493 # The shape of the bounded region that constrains the position of the end-effector\n\
01494 # This region is always centered at the position defined above\n\
01495 geometric_shapes_msgs/Shape constraint_region_shape\n\
01496 \n\
01497 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01498 # This allows the specification of non-axis aligned constraints\n\
01499 geometry_msgs/Quaternion constraint_region_orientation\n\
01500 \n\
01501 # Constraint weighting factor - a weight for this constraint\n\
01502 float64 weight\n\
01503 ================================================================================\n\
01504 MSG: geometric_shapes_msgs/Shape\n\
01505 byte SPHERE=0\n\
01506 byte BOX=1\n\
01507 byte CYLINDER=2\n\
01508 byte MESH=3\n\
01509 \n\
01510 byte type\n\
01511 \n\
01512 \n\
01513 #### define sphere, box, cylinder ####\n\
01514 # the origin of each shape is considered at the shape's center\n\
01515 \n\
01516 # for sphere\n\
01517 # radius := dimensions[0]\n\
01518 \n\
01519 # for cylinder\n\
01520 # radius := dimensions[0]\n\
01521 # length := dimensions[1]\n\
01522 # the length is along the Z axis\n\
01523 \n\
01524 # for box\n\
01525 # size_x := dimensions[0]\n\
01526 # size_y := dimensions[1]\n\
01527 # size_z := dimensions[2]\n\
01528 float64[] dimensions\n\
01529 \n\
01530 \n\
01531 #### define mesh ####\n\
01532 \n\
01533 # list of triangles; triangle k is defined by tre vertices located\n\
01534 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01535 int32[] triangles\n\
01536 geometry_msgs/Point[] vertices\n\
01537 \n\
01538 ================================================================================\n\
01539 MSG: motion_planning_msgs/OrientationConstraint\n\
01540 # This message contains the definition of an orientation constraint.\n\
01541 Header header\n\
01542 \n\
01543 # The robot link this constraint refers to\n\
01544 string link_name\n\
01545 \n\
01546 # The type of the constraint\n\
01547 int32 type\n\
01548 int32 LINK_FRAME=0\n\
01549 int32 HEADER_FRAME=1\n\
01550 \n\
01551 # The desired orientation of the robot link specified as a quaternion\n\
01552 geometry_msgs/Quaternion orientation\n\
01553 \n\
01554 # optional RPY error tolerances specified if \n\
01555 float64 absolute_roll_tolerance\n\
01556 float64 absolute_pitch_tolerance\n\
01557 float64 absolute_yaw_tolerance\n\
01558 \n\
01559 # Constraint weighting factor - a weight for this constraint\n\
01560 float64 weight\n\
01561 \n\
01562 ================================================================================\n\
01563 MSG: motion_planning_msgs/VisibilityConstraint\n\
01564 # This message contains the definition of a visibility constraint.\n\
01565 Header header\n\
01566 \n\
01567 # The point stamped target that needs to be kept within view of the sensor\n\
01568 geometry_msgs/PointStamped target\n\
01569 \n\
01570 # The local pose of the frame in which visibility is to be maintained\n\
01571 # The frame id should represent the robot link to which the sensor is attached\n\
01572 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01573 geometry_msgs/PoseStamped sensor_pose\n\
01574 \n\
01575 # The deviation (in radians) that will be tolerated\n\
01576 # Constraint error will be measured as the solid angle between the \n\
01577 # X axis of the frame defined above and the vector between the origin \n\
01578 # of the frame defined above and the target location\n\
01579 float64 absolute_tolerance\n\
01580 \n\
01581 \n\
01582 ================================================================================\n\
01583 MSG: geometry_msgs/PointStamped\n\
01584 # This represents a Point with reference coordinate frame and timestamp\n\
01585 Header header\n\
01586 Point point\n\
01587 \n\
01588 ================================================================================\n\
01589 MSG: motion_planning_msgs/OrderedCollisionOperations\n\
01590 # A set of collision operations that will be performed in the order they are specified\n\
01591 CollisionOperation[] collision_operations\n\
01592 ================================================================================\n\
01593 MSG: motion_planning_msgs/CollisionOperation\n\
01594 # A definition of a collision operation\n\
01595 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01596 # between the gripper and all objects in the collision space\n\
01597 \n\
01598 string object1\n\
01599 string object2\n\
01600 string COLLISION_SET_ALL=\"all\"\n\
01601 string COLLISION_SET_OBJECTS=\"objects\"\n\
01602 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01603 \n\
01604 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01605 float64 penetration_distance\n\
01606 \n\
01607 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01608 int32 operation\n\
01609 int32 DISABLE=0\n\
01610 int32 ENABLE=1\n\
01611 \n\
01612 ================================================================================\n\
01613 MSG: motion_planning_msgs/LinkPadding\n\
01614 #name for the link\n\
01615 string link_name\n\
01616 \n\
01617 # padding to apply to the link\n\
01618 float64 padding\n\
01619 \n\
01620 ";
01621 }
01622
01623 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
01624 };
01625
01626 }
01627 }
01628
01629 namespace ros
01630 {
01631 namespace serialization
01632 {
01633
01634 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >
01635 {
01636 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01637 {
01638 stream.next(m.arm_name);
01639 stream.next(m.target);
01640 stream.next(m.desired_grasps);
01641 stream.next(m.desired_approach_distance);
01642 stream.next(m.min_approach_distance);
01643 stream.next(m.lift);
01644 stream.next(m.collision_object_name);
01645 stream.next(m.collision_support_surface_name);
01646 stream.next(m.allow_gripper_support_collision);
01647 stream.next(m.use_reactive_execution);
01648 stream.next(m.use_reactive_lift);
01649 stream.next(m.path_constraints);
01650 stream.next(m.additional_collision_operations);
01651 stream.next(m.additional_link_padding);
01652 }
01653
01654 ROS_DECLARE_ALLINONE_SERIALIZER;
01655 };
01656 }
01657 }
01658
01659 namespace ros
01660 {
01661 namespace message_operations
01662 {
01663
01664 template<class ContainerAllocator>
01665 struct Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >
01666 {
01667 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v)
01668 {
01669 s << indent << "arm_name: ";
01670 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01671 s << indent << "target: ";
01672 s << std::endl;
01673 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
01674 s << indent << "desired_grasps[]" << std::endl;
01675 for (size_t i = 0; i < v.desired_grasps.size(); ++i)
01676 {
01677 s << indent << " desired_grasps[" << i << "]: ";
01678 s << std::endl;
01679 s << indent;
01680 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.desired_grasps[i]);
01681 }
01682 s << indent << "desired_approach_distance: ";
01683 Printer<float>::stream(s, indent + " ", v.desired_approach_distance);
01684 s << indent << "min_approach_distance: ";
01685 Printer<float>::stream(s, indent + " ", v.min_approach_distance);
01686 s << indent << "lift: ";
01687 s << std::endl;
01688 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift);
01689 s << indent << "collision_object_name: ";
01690 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name);
01691 s << indent << "collision_support_surface_name: ";
01692 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01693 s << indent << "allow_gripper_support_collision: ";
01694 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision);
01695 s << indent << "use_reactive_execution: ";
01696 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_execution);
01697 s << indent << "use_reactive_lift: ";
01698 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_lift);
01699 s << indent << "path_constraints: ";
01700 s << std::endl;
01701 Printer< ::motion_planning_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints);
01702 s << indent << "additional_collision_operations: ";
01703 s << std::endl;
01704 Printer< ::motion_planning_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations);
01705 s << indent << "additional_link_padding[]" << std::endl;
01706 for (size_t i = 0; i < v.additional_link_padding.size(); ++i)
01707 {
01708 s << indent << " additional_link_padding[" << i << "]: ";
01709 s << std::endl;
01710 s << indent;
01711 Printer< ::motion_planning_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]);
01712 }
01713 }
01714 };
01715
01716
01717 }
01718 }
01719
01720 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
01721