Functions
testHybridMotionModel.cpp File Reference

Tests hybrid inference with a simple switching motion model. More...

#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <CppUnitLite/TestHarness.h>
#include <memory>
Include dependency graph for testHybridMotionModel.cpp:

Go to the source code of this file.

Functions

void addMeasurement (HybridBayesNet &hbn, Key z_key, Key x_key, double sigma)
 
std::pair< double, double > approximateDiscreteMarginal (const HybridBayesNet &hbn, const HybridGaussianConditional::shared_ptr &hybridMotionModel, const VectorValues &given, size_t N=100000)
 Approximate the discrete marginal P(m1) using importance sampling. More...
 
HybridBayesNet CreateBayesNet (const HybridGaussianConditional::shared_ptr &hybridMotionModel, bool add_second_measurement=false)
 Create two state Bayes network with 1 or two measurement models. More...
 
static HybridGaussianConditional::shared_ptr CreateHybridMotionModel (double mu0, double mu1, double sigma0, double sigma1)
 Create hybrid motion model p(x1 | x0, m1) More...
 
DiscreteKey m1 (M(1), 2)
 
int main ()
 
 TEST (HybridGaussianFactor, TwoStateModel)
 
 TEST (HybridGaussianFactor, TwoStateModel2)
 
 TEST (HybridGaussianFactor, TwoStateModel3)
 
 TEST (HybridGaussianFactor, TwoStateModel4)
 

Detailed Description

Tests hybrid inference with a simple switching motion model.

Author
Varun Agrawal
Fan Jiang
Frank Dellaert
Date
December 2021

Definition in file testHybridMotionModel.cpp.

Function Documentation

◆ addMeasurement()

void addMeasurement ( HybridBayesNet hbn,
Key  z_key,
Key  x_key,
double  sigma 
)

Definition at line 49 of file testHybridMotionModel.cpp.

◆ approximateDiscreteMarginal()

std::pair<double, double> approximateDiscreteMarginal ( const HybridBayesNet hbn,
const HybridGaussianConditional::shared_ptr hybridMotionModel,
const VectorValues given,
size_t  N = 100000 
)

Approximate the discrete marginal P(m1) using importance sampling.

Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1), using q(x0) = N(z0, sigmaQ) to sample x0.

Definition at line 88 of file testHybridMotionModel.cpp.

◆ CreateBayesNet()

HybridBayesNet CreateBayesNet ( const HybridGaussianConditional::shared_ptr hybridMotionModel,
bool  add_second_measurement = false 
)

Create two state Bayes network with 1 or two measurement models.

Definition at line 65 of file testHybridMotionModel.cpp.

◆ CreateHybridMotionModel()

static HybridGaussianConditional::shared_ptr CreateHybridMotionModel ( double  mu0,
double  mu1,
double  sigma0,
double  sigma1 
)
static

Create hybrid motion model p(x1 | x0, m1)

Definition at line 56 of file testHybridMotionModel.cpp.

◆ m1()

DiscreteKey m1 ( M(1)  ,
 
)

◆ main()

int main ( )

Definition at line 389 of file testHybridMotionModel.cpp.

◆ TEST() [1/4]

TEST ( HybridGaussianFactor  ,
TwoStateModel   
)

Test a model p(z0|x0)p(z1|x1)p(x1|x0,m1)P(m1).

p(x1|x0,m1) has mode-dependent mean but same covariance.

Converting to a factor graph gives us ϕ(x0;z0)ϕ(x1;z1)ϕ(x1,x0,m1)P(m1)

If we only have a measurement on x0, then the posterior probability of m1 should be 0.5/0.5. Getting a measurement on z1 gives use more information.

Definition at line 127 of file testHybridMotionModel.cpp.

◆ TEST() [2/4]

TEST ( HybridGaussianFactor  ,
TwoStateModel2   
)

Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).

P(x1|x0,m1) has different means and different covariances.

Converting to a factor graph gives us ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)

If we only have a measurement on z0, then the P(m1) should be 0.5/0.5. Getting a measurement on z1 gives use more information.

Definition at line 181 of file testHybridMotionModel.cpp.

◆ TEST() [3/4]

TEST ( HybridGaussianFactor  ,
TwoStateModel3   
)

Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).

p(x1|x0,m1) has the same means but different covariances.

Converting to a factor graph gives us ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)

If we only have a measurement on z0, then the p(m1) should be 0.5/0.5. Getting a measurement on z1 gives use more information.

Definition at line 284 of file testHybridMotionModel.cpp.

◆ TEST() [4/4]

TEST ( HybridGaussianFactor  ,
TwoStateModel4   
)

Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative measurements and vastly different motion model: either stand still or move far. This yields a very informative posterior.

Definition at line 369 of file testHybridMotionModel.cpp.



gtsam
Author(s):
autogenerated on Fri Nov 1 2024 03:43:25