EquivInertialNavFactor_GlobalVel.h
Go to the documentation of this file.
1 
2 /* ----------------------------------------------------------------------------
3 
4  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
5  * Atlanta, Georgia 30332-0415
6  * All Rights Reserved
7  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
8 
9  * See LICENSE for the license information
10 
11  * -------------------------------------------------------------------------- */
12 
20 #pragma once
21 
24 #include <gtsam/geometry/Rot3.h>
25 #include <gtsam/base/Matrix.h>
26 
27 // Using numerical derivative to calculate d(Pose3::Expmap)/dw
29 
30 #include <ostream>
31 
32 namespace gtsam {
33 
34 /*
35  * NOTES:
36  * =====
37  * Concept: Based on [Lupton12tro]
38  * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations.
39  * Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began).
40  * All sensor-to-body transformations are performed here.
41  * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial.
42  * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel factor, which will
43  * relate between navigation variables at the two time instances (t0 and current time).
44  *
45  * Other notes:
46  * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
47  * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
48  * - Camera and IMU frames are identical
49  * - The user should specify a continuous equivalent noise covariance, which can be calculated using
50  * the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
51  * matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
52  * discrete form using the supplied delta_t between sub-sequential measurements.
53  * - Earth-rate correction:
54  * + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
55  * frame (Local-Level system: ENU or NED, see above).
56  * + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
57  * + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
58  * Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
59  *
60  * - Frame Notation:
61  * Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
62  * So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
63  * And the transformation from the body frame to the world frame would be: world_P_body
64  * This allows visual chaining. For example, converting the sensed angular velocity of the IMU
65  * (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
66  * world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
67  *
68  *
69  * - Common Quantity Types
70  * P : pose/3d transformation
71  * R : rotation
72  * omega : angular velocity
73  * t : translation
74  * v : velocity
75  * a : acceleration
76  *
77  * - Common Frames
78  * sensor : the coordinate system attached to the sensor origin
79  * body : the coordinate system attached to body/inertial frame.
80  * Unless an optional frame transformation is provided, the
81  * sensor frame and the body frame will be identical
82  * world : the global/world coordinate frame. This is assumed to be
83  * a tangent plane to the earth's surface somewhere near the
84  * vehicle
85  */
86 
87 template<class POSE, class VELOCITY, class IMUBIAS>
88 class EquivInertialNavFactor_GlobalVel : public NoiseModelFactorN<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> {
89 
90 private:
91 
94 
98  double dt12_;
99 
103 
105 
106  std::optional<IMUBIAS> Bias_initial_; // Bias used when pre-integrating IMU measurements
107  std::optional<POSE> body_P_sensor_; // The pose of the sensor in the body frame
108 
109 public:
110 
111  // Provide access to the Matrix& version of evaluateError:
112  using Base::evaluateError;
113 
114  // shorthand for a smart pointer to a factor
115  typedef typename std::shared_ptr<EquivInertialNavFactor_GlobalVel> shared_ptr;
116 
119 
121  EquivInertialNavFactor_GlobalVel(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2,
122  const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
123  double dt12, const Vector world_g, const Vector world_rho,
124  const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent,
125  const Matrix& Jacobian_wrt_t0_Overall,
126  std::optional<IMUBIAS> Bias_initial = {}, std::optional<POSE> body_P_sensor = {}) :
127  Base(model_equivalent, Pose1, Vel1, IMUBias1, Pose2, Vel2),
128  delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles),
130  Bias_initial_(Bias_initial), body_P_sensor_(body_P_sensor) { }
131 
133 
137  void print(const std::string& s = "EquivInertialNavFactor_GlobalVel", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
138  std::cout << s << "("
139  << keyFormatter(this->key1()) << ","
140  << keyFormatter(this->key2()) << ","
141  << keyFormatter(this->key3()) << ","
142  << keyFormatter(this->key4()) << ","
143  << keyFormatter(this->key5()) << "\n";
144  std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
145  std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
146  std::cout << "delta_angles: " << this->delta_angles_ << std::endl;
147  std::cout << "dt12: " << this->dt12_ << std::endl;
148  std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
149  std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
150  std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
151  if(this->body_P_sensor_)
152  this->body_P_sensor_->print(" sensor pose in body frame: ");
153  this->noiseModel_->print(" noise model");
154  }
155 
157  bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
158  const This *e = dynamic_cast<const This*> (&expected);
159  return e != nullptr && Base::equals(*e, tol)
160  && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol
161  && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol
162  && (delta_angles_ - e->delta_angles_).norm() < tol
163  && (dt12_ - e->dt12_) < tol
164  && (world_g_ - e->world_g_).norm() < tol
165  && (world_rho_ - e->world_rho_).norm() < tol
166  && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
167  && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
168  }
169 
170 
171  POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
172 
173  // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0)
174  Vector delta_BiasAcc = Bias1.accelerometer();
175  Vector delta_BiasGyro = Bias1.gyroscope();
176  if (Bias_initial_){
177  delta_BiasAcc -= Bias_initial_->accelerometer();
178  delta_BiasGyro -= Bias_initial_->gyroscope();
179  }
180 
181  Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(4,9,3,3);
182  Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(4,12,3,3);
183  Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(0,12,3,3);
184 
185  /* Position term */
186  Vector delta_pos_in_t0_corrected = delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
187 
188  /* Rotation term */
189  Vector delta_angles_corrected = delta_angles_ + J_angles_wrt_BiasGyro*delta_BiasGyro;
190  // Another alternative:
191  // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
192 
193  return predictPose_inertial(Pose1, Vel1,
194  delta_pos_in_t0_corrected, delta_angles_corrected,
196  }
197 
198  static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1,
199  const Vector& delta_pos_in_t0, const Vector3& delta_angles,
200  const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){
201 
202  const POSE& world_P1_body = Pose1;
203  const VELOCITY& world_V1_body = Vel1;
204 
205  /* Position term */
206  Vector body_deltaPos_body = delta_pos_in_t0;
207 
208  Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
209  Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
210 
211  // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
212  world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
213 
214  /* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct:
215  * the gravity should be canceled from the accelerometer measurements, bust since position
216  * is added with a delta velocity from a previous term, the actual delta time is more complicated.
217  * Need to figure out this in the future - currently because of this issue we'll get some more error
218  * in Z axis.
219  */
220 
221  /* Rotation term */
222  Vector body_deltaAngles_body = delta_angles;
223 
224  // Convert earth-related terms into the body frame
225  Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
226  Vector body_rho = body_R_world * world_rho;
227  Vector body_omega_earth = body_R_world * world_omega_earth;
228 
229  // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
230  body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
231 
232  return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body));
233 
234  }
235 
236  VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
237 
238  // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0)
239  Vector delta_BiasAcc = Bias1.accelerometer();
240  Vector delta_BiasGyro = Bias1.gyroscope();
241  if (Bias_initial_){
242  delta_BiasAcc -= Bias_initial_->accelerometer();
243  delta_BiasGyro -= Bias_initial_->gyroscope();
244  }
245 
246  Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(6,9,3,3);
247  Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(6,12,3,3);
248 
249  Vector delta_vel_in_t0_corrected = delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
250 
251  return predictVelocity_inertial(Pose1, Vel1,
252  delta_vel_in_t0_corrected,
254  }
255 
256  static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1,
257  const Vector& delta_vel_in_t0,
258  const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) {
259 
260  const POSE& world_P1_body = Pose1;
261  const VELOCITY& world_V1_body = Vel1;
262 
263  Vector body_deltaVel_body = delta_vel_in_t0;
264  Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
265 
266  VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
267 
268  // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
269  VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
270 
271  // Predict
272  return Vel1 + VelDelta;
273 
274  }
275 
276  void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const {
277  Pose2 = predictPose(Pose1, Vel1, Bias1);
278  Vel2 = predictVelocity(Pose1, Vel1, Bias1);
279  }
280 
281  POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
282  // Predict
283  POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1);
284 
285  // Luca: difference between Pose2 and Pose2Pred
286  POSE DiffPose( Pose2.rotation().between(Pose2Pred.rotation()), Pose2Pred.translation() - Pose2.translation() );
287 // DiffPose = Pose2.between(Pose2Pred);
288  return DiffPose;
289  // Calculate error
290  //return Pose2.between(Pose2Pred);
291  }
292 
293  VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
294  // Predict
295  VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1);
296 
297  // Calculate error
298  return Vel2Pred-Vel2;
299  }
300 
301  Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2,
303  OptionalMatrixType H5) const override {
304 
305  // TODO: Write analytical derivative calculations
306  // Jacobian w.r.t. Pose1
307  if (H1){
308  Matrix H1_Pose = numericalDerivative11<POSE, POSE>(
310  this, std::placeholders::_1, Vel1, Bias1, Pose2, Vel2),
311  Pose1);
312  Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(
314  this, std::placeholders::_1, Vel1, Bias1, Pose2, Vel2),
315  Pose1);
316  *H1 = stack(2, &H1_Pose, &H1_Vel);
317  }
318 
319  // Jacobian w.r.t. Vel1
320  if (H2){
321  if (Vel1.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
322  Matrix H2_Pose = numericalDerivative11<POSE, Vector3>(
324  this, Pose1, std::placeholders::_1, Bias1, Pose2, Vel2),
325  Vel1);
326  Matrix H2_Vel = numericalDerivative11<Vector3, Vector3>(
328  this, Pose1, std::placeholders::_1, Bias1, Pose2, Vel2),
329  Vel1);
330  *H2 = stack(2, &H2_Pose, &H2_Vel);
331  }
332 
333  // Jacobian w.r.t. IMUBias1
334  if (H3){
335  Matrix H3_Pose = numericalDerivative11<POSE, IMUBIAS>(
337  this, Pose1, Vel1, std::placeholders::_1, Pose2, Vel2),
338  Bias1);
339  Matrix H3_Vel = numericalDerivative11<VELOCITY, IMUBIAS>(
341  this, Pose1, Vel1, std::placeholders::_1, Pose2, Vel2),
342  Bias1);
343  *H3 = stack(2, &H3_Pose, &H3_Vel);
344  }
345 
346  // Jacobian w.r.t. Pose2
347  if (H4){
348  Matrix H4_Pose = numericalDerivative11<POSE, POSE>(
350  this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
351  Pose2);
352  Matrix H4_Vel = numericalDerivative11<VELOCITY, POSE>(
354  this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
355  Pose2);
356  *H4 = stack(2, &H4_Pose, &H4_Vel);
357  }
358 
359  // Jacobian w.r.t. Vel2
360  if (H5){
361  if (Vel2.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
362  Matrix H5_Pose = numericalDerivative11<POSE, Vector3>(
364  this, Pose1, Vel1, Bias1, Pose2, std::placeholders::_1),
365  Vel2);
366  Matrix H5_Vel = numericalDerivative11<Vector3, Vector3>(
368  this, Pose1, Vel1, Bias1, Pose2, std::placeholders::_1),
369  Vel2);
370  *H5 = stack(2, &H5_Pose, &H5_Vel);
371  }
372 
373  Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2)));
374  Vector ErrVelVector(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2));
375 
376  return concatVectors(2, &ErrPoseVector, &ErrVelVector);
377  }
378 
379 
380 
381  static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1,
382  const Vector& delta_pos_in_t0, const Vector3& delta_angles,
383  double dt12, const Vector world_g, const Vector world_rho,
384  const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall,
385  const std::optional<IMUBIAS>& Bias_initial = {}) {
386 
387 
388  // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0)
389  Vector delta_BiasAcc = Bias1.accelerometer();
390  Vector delta_BiasGyro = Bias1.gyroscope();
391  if (Bias_initial){
392  delta_BiasAcc -= Bias_initial->accelerometer();
393  delta_BiasGyro -= Bias_initial->gyroscope();
394  }
395 
396  Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(4,9,3,3);
397  Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3);
398  Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3);
399 
400  /* Position term */
401  Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
402 
403  /* Rotation term */
404  Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro;
405  // Another alternative:
406  // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
407 
408  return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
409  }
410 
411  static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1,
412  const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho,
413  const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall,
414  const std::optional<IMUBIAS>& Bias_initial = {}) {
415 
416  // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0)
417  Vector delta_BiasAcc = Bias1.accelerometer();
418  Vector delta_BiasGyro = Bias1.gyroscope();
419  if (Bias_initial){
420  delta_BiasAcc -= Bias_initial->accelerometer();
421  delta_BiasGyro -= Bias_initial->gyroscope();
422  }
423 
424  Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(6,9,3,3);
425  Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3);
426 
427  Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
428 
429  return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
430  }
431 
432  static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2,
433  const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
434  double dt12, const Vector world_g, const Vector world_rho,
435  const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall,
436  const std::optional<IMUBIAS>& Bias_initial = {}) {
437 
438  Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
439  Vel2 = PredictVelocityFromPreIntegration(Pose1, Vel1, Bias1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
440  }
441 
442 
443  static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt,
444  Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t,
445  const noiseModel::Gaussian::shared_ptr& model_continuous_overall,
446  Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall, const IMUBIAS Bias_t0 = IMUBIAS(),
447  std::optional<POSE> p_body_P_sensor = {}){
448  // Note: all delta terms refer to an IMU\sensor system at t0
449  // Note: Earth-related terms are not accounted here but are incorporated in predict functions.
450 
451  POSE body_P_sensor = POSE();
452  bool flag_use_body_P_sensor = false;
453  if (p_body_P_sensor){
454  body_P_sensor = *p_body_P_sensor;
455  flag_use_body_P_sensor = true;
456  }
457 
458  delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0);
459  delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0);
460  delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, Bias_t0);
461 
462  delta_t += msr_dt;
463 
464  // Update EquivCov_Overall
465  Matrix Z_3x3 = Z_3x3;
466  Matrix I_3x3 = I_3x3;
467 
468  Matrix H_pos_pos = numericalDerivative11<Vector3, Vector3>(
469  std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt,
470  std::placeholders::_1, delta_vel_in_t0),
471  delta_pos_in_t0);
472  Matrix H_pos_vel = numericalDerivative11<Vector3, Vector3>(
473  std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt,
474  delta_pos_in_t0, std::placeholders::_1),
475  delta_vel_in_t0);
476  Matrix H_pos_angles = Z_3x3;
477  Matrix H_pos_bias = collect(2, &Z_3x3, &Z_3x3);
478 
479  Matrix H_vel_vel = numericalDerivative11<Vector3, Vector3>(
480  std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t,
481  msr_acc_t, msr_dt, delta_angles, std::placeholders::_1,
482  flag_use_body_P_sensor, body_P_sensor, Bias_t0),
483  delta_vel_in_t0);
484  Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(
485  std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t,
486  msr_acc_t, msr_dt, std::placeholders::_1, delta_vel_in_t0,
487  flag_use_body_P_sensor, body_P_sensor, Bias_t0),
488  delta_angles);
489  Matrix H_vel_bias = numericalDerivative11<Vector3, IMUBIAS>(
490  std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t,
491  msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0,
492  flag_use_body_P_sensor, body_P_sensor,
493  std::placeholders::_1),
494  Bias_t0);
495  Matrix H_vel_pos = Z_3x3;
496 
497  Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(
498  std::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t,
499  msr_dt, std::placeholders::_1, flag_use_body_P_sensor,
500  body_P_sensor, Bias_t0),
501  delta_angles);
502  Matrix H_angles_bias = numericalDerivative11<Vector3, IMUBIAS>(
503  std::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t,
504  msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor,
505  std::placeholders::_1),
506  Bias_t0);
507  Matrix H_angles_pos = Z_3x3;
508  Matrix H_angles_vel = Z_3x3;
509 
510  Matrix F_angles = collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias);
511  Matrix F_pos = collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias);
512  Matrix F_vel = collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias);
513  Matrix F_bias_a = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3);
514  Matrix F_bias_g = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3);
515  Matrix F = stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g);
516 
517 
518  noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt );
519  Matrix Q_d = (model_discrete_curr->R().transpose() * model_discrete_curr->R()).inverse();
520 
521  EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
522  // Luca: force identity covariance matrix (for testing purposes)
523  // EquivCov_Overall = Matrix::Identity(15,15);
524 
525  // Update Jacobian_wrt_t0_Overall
526  Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
527  }
528 
529  static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt,
530  const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){
531 
532  // Note: all delta terms refer to an IMU\sensor system at t0
533  // Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here.
534 
535  return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
536  }
537 
538 
539 
540  static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
541  const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor,
542  IMUBIAS Bias_t0 = IMUBIAS()){
543 
544  // Note: all delta terms refer to an IMU\sensor system at t0
545 
546  // Calculate the corrected measurements using the Bias object
547  Vector AccCorrected = Bias_t0.correctAccelerometer(msr_acc_t);
548  Vector body_t_a_body;
549  if (flag_use_body_P_sensor){
550  Matrix body_R_sensor = body_P_sensor.rotation().matrix();
551 
552  Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t));
553 
554  Vector body_omega_body = body_R_sensor * GyroCorrected;
555  Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
556 
557  body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
558  } else{
559  body_t_a_body = AccCorrected;
560  }
561 
562  Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
563 
564  return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
565  }
566 
567 
568  static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
569  const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor,
570  IMUBIAS Bias_t0 = IMUBIAS()){
571 
572  // Note: all delta terms refer to an IMU\sensor system at t0
573 
574  // Calculate the corrected measurements using the Bias object
575  Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t);
576 
577  Vector body_t_omega_body;
578  if (flag_use_body_P_sensor){
579  body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
580  } else {
581  body_t_omega_body = GyroCorrected;
582  }
583 
584  Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
585 
586  R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
587  return Rot3::Logmap(R_t_to_t0);
588  }
589 
590 
592  const noiseModel::Gaussian::shared_ptr& gaussian_process){
593 
594  Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse();
595  Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse();
596  Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse();
597 
598  cov_process.block(0,0, 3,3) += cov_gyro;
599  cov_process.block(6,6, 3,3) += cov_acc;
600 
601  return noiseModel::Gaussian::Covariance(cov_process);
602  }
603 
605  const noiseModel::Gaussian::shared_ptr& gaussian_process,
606  Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){
607 
608  cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse();
609  cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse();
610  cov_process_without_acc_gyro = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse();
611  }
612 
613  static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
614  Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
615 
616  Matrix ENU_to_NED = (Matrix(3, 3) <<
617  0.0, 1.0, 0.0,
618  1.0, 0.0, 0.0,
619  0.0, 0.0, -1.0).finished();
620 
621  Matrix NED_to_ENU = (Matrix(3, 3) <<
622  0.0, 1.0, 0.0,
623  1.0, 0.0, 0.0,
624  0.0, 0.0, -1.0).finished();
625 
626  // Convert incoming parameters to ENU
627  Vector Pos_ENU = NED_to_ENU * Pos_NED;
628  Vector Vel_ENU = NED_to_ENU * Vel_NED;
629  Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
630 
631  // Call ENU version
632  Vector g_ENU;
633  Vector rho_ENU;
634  Vector omega_earth_ENU;
635  Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
636 
637  // Convert output to NED
638  g_NED = ENU_to_NED * g_ENU;
639  rho_NED = ENU_to_NED * rho_ENU;
640  omega_earth_NED = ENU_to_NED * omega_earth_ENU;
641  }
642 
643  static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
644  Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
645  double R0 = 6.378388e6;
646  double e = 1/297;
647  double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
648 
649  // Calculate current lat, lon
650  Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
651  double delta_lat(delta_Pos_ENU(1)/Re);
652  double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
653  double lat_new(LatLonHeight_IC(0) + delta_lat);
654  double lon_new(LatLonHeight_IC(1) + delta_lon);
655 
656  // Rotation of lon about z axis
657  Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
658  -sin(lon_new), cos(lon_new), 0.0,
659  0.0, 0.0, 1.0);
660 
661  // Rotation of lat about y axis
662  Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
663  0.0, 1.0, 0.0,
664  -sin(lat_new), 0.0, cos(lat_new));
665 
666  Rot3 UEN_to_ENU(0, 1, 0,
667  0, 0, 1,
668  1, 0, 0);
669 
670  Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
671 
672  Vector omega_earth_ECEF(Vector3(0.0, 0.0, 7.292115e-5));
673  omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
674 
675  // Calculating g
676  double height(LatLonHeight_IC(2));
677  double EQUA_RADIUS = 6378137.0; // equatorial radius of the earth; WGS-84
678  double ECCENTRICITY = 0.0818191908426; // eccentricity of the earth ellipsoid
679  double e2( pow(ECCENTRICITY,2) );
680  double den( 1-e2*pow(sin(lat_new),2) );
681  double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
682  double Rp( EQUA_RADIUS/( sqrt(den) ) );
683  double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature
684  double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
685  double g_calc( g0/( pow(1 + height/Ro, 2) ) );
686  g_ENU = (Vector(3) << 0.0, 0.0, -g_calc).finished();
687 
688 
689  // Calculate rho
690  double Ve( Vel_ENU(0) );
691  double Vn( Vel_ENU(1) );
692  double rho_E = -Vn/(Rm + height);
693  double rho_N = Ve/(Rp + height);
694  double rho_U = Ve*tan(lat_new)/(Rp + height);
695  rho_ENU = (Vector(3) << rho_E, rho_N, rho_U).finished();
696  }
697 
699  /* Q_d (approx)= Q * delta_t */
700  /* In practice, square root of the information matrix is represented, so that:
701  * R_d (approx)= R / sqrt(delta_t)
702  * */
703  return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t));
704  }
705 private:
706 
707 #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
708 
709  friend class boost::serialization::access;
710  template<class ARCHIVE>
711  void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
712  ar & boost::serialization::make_nvp("NonlinearFactor2",
713  boost::serialization::base_object<Base>(*this));
714  }
715 #endif
716 
717 
718 
719 }; // \class EquivInertialNavFactor_GlobalVel
720 
721 }
gtsam::EquivInertialNavFactor_GlobalVel::Base
NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY > Base
Definition: EquivInertialNavFactor_GlobalVel.h:93
gtsam::NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY >::key4
Key key4() const
Definition: NonlinearFactor.h:745
gtsam::LieGroup::between
Class between(const Class &g) const
Definition: Lie.h:52
gtsam::EquivInertialNavFactor_GlobalVel::Bias_initial_
std::optional< IMUBIAS > Bias_initial_
Definition: EquivInertialNavFactor_GlobalVel.h:106
gtsam::EquivInertialNavFactor_GlobalVel::This
EquivInertialNavFactor_GlobalVel< POSE, VELOCITY, IMUBIAS > This
Definition: EquivInertialNavFactor_GlobalVel.h:92
gtsam::EquivInertialNavFactor_GlobalVel::predict
void predict(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, POSE &Pose2, VELOCITY &Vel2) const
Definition: EquivInertialNavFactor_GlobalVel.h:276
inverse
const EIGEN_DEVICE_FUNC InverseReturnType inverse() const
Definition: ArrayCwiseUnaryOps.h:411
gtsam::EquivInertialNavFactor_GlobalVel::evaluateVelocityError
VELOCITY evaluateVelocityError(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const POSE &Pose2, const VELOCITY &Vel2) const
Definition: EquivInertialNavFactor_GlobalVel.h:293
gtsam::EquivInertialNavFactor_GlobalVel::PredictFromPreIntegration
static void PredictFromPreIntegration(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, POSE &Pose2, VELOCITY &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const Matrix &Jacobian_wrt_t0_Overall, const std::optional< IMUBIAS > &Bias_initial={})
Definition: EquivInertialNavFactor_GlobalVel.h:432
s
RealScalar s
Definition: level1_cplx_impl.h:126
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
ceres::sin
Jet< T, N > sin(const Jet< T, N > &f)
Definition: jet.h:439
gtsam::EquivInertialNavFactor_GlobalVel::shared_ptr
std::shared_ptr< EquivInertialNavFactor_GlobalVel > shared_ptr
Definition: EquivInertialNavFactor_GlobalVel.h:115
gtsam::EquivInertialNavFactor_GlobalVel::body_P_sensor_
std::optional< POSE > body_P_sensor_
Definition: EquivInertialNavFactor_GlobalVel.h:107
gtsam::Pose2::rotation
const Rot2 & rotation(OptionalJacobian< 1, 3 > Hself={}) const
rotation
Definition: Pose2.h:270
C1
static double C1
Definition: ellpk.c:93
gtsam::EquivInertialNavFactor_GlobalVel::print
void print(const std::string &s="EquivInertialNavFactor_GlobalVel", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
Definition: EquivInertialNavFactor_GlobalVel.h:137
gtsam::EquivInertialNavFactor_GlobalVel::evaluatePoseError
POSE evaluatePoseError(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const POSE &Pose2, const VELOCITY &Vel2) const
Definition: EquivInertialNavFactor_GlobalVel.h:281
Matrix.h
typedef and functions to augment Eigen's MatrixXd
gtsam::NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY >::evaluateError
virtual Vector evaluateError(const ValueTypes &... x, OptionalMatrixTypeT< ValueTypes >... H) const=0
gtsam::EquivInertialNavFactor_GlobalVel::PreIntegrateIMUObservations
static void PreIntegrateIMUObservations(const Vector &msr_acc_t, const Vector &msr_gyro_t, const double msr_dt, Vector &delta_pos_in_t0, Vector3 &delta_angles, Vector &delta_vel_in_t0, double &delta_t, const noiseModel::Gaussian::shared_ptr &model_continuous_overall, Matrix &EquivCov_Overall, Matrix &Jacobian_wrt_t0_Overall, const IMUBIAS Bias_t0=IMUBIAS(), std::optional< POSE > p_body_P_sensor={})
Definition: EquivInertialNavFactor_GlobalVel.h:443
gtsam::Matrix
Eigen::MatrixXd Matrix
Definition: base/Matrix.h:39
gtsam::NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY >::key5
Key key5() const
Definition: NonlinearFactor.h:750
gtsam::Factor
Definition: Factor.h:70
gtsam::EquivInertialNavFactor_GlobalVel::~EquivInertialNavFactor_GlobalVel
~EquivInertialNavFactor_GlobalVel() override
Definition: EquivInertialNavFactor_GlobalVel.h:132
gtsam::Vector3
Eigen::Vector3d Vector3
Definition: Vector.h:43
C2
Definition: test_operator_overloading.cpp:98
C2
static double C2[]
Definition: shichi.c:141
gtsam::NoiseModelFactor::noiseModel_
SharedNoiseModel noiseModel_
Definition: NonlinearFactor.h:205
world_g
static const Vector3 world_g(0.0, 0.0, 9.81)
gtsam::noiseModel::Gaussian::shared_ptr
std::shared_ptr< Gaussian > shared_ptr
Definition: NoiseModel.h:191
body_P_sensor
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0))
gtsam::Vector
Eigen::VectorXd Vector
Definition: Vector.h:38
gtsam::EquivInertialNavFactor_GlobalVel::world_omega_earth_
Vector world_omega_earth_
Definition: EquivInertialNavFactor_GlobalVel.h:102
gtsam::skewSymmetric
Matrix3 skewSymmetric(double wx, double wy, double wz)
Definition: base/Matrix.h:400
gtsam::EquivInertialNavFactor_GlobalVel::equals
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
Definition: EquivInertialNavFactor_GlobalVel.h:157
gtsam::EquivInertialNavFactor_GlobalVel::PredictPoseFromPreIntegration
static POSE PredictPoseFromPreIntegration(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const Vector &delta_pos_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const Matrix &Jacobian_wrt_t0_Overall, const std::optional< IMUBIAS > &Bias_initial={})
Definition: EquivInertialNavFactor_GlobalVel.h:381
gtsam::concatVectors
Vector concatVectors(const std::list< Vector > &vs)
Definition: Vector.cpp:301
ceres::cos
Jet< T, N > cos(const Jet< T, N > &f)
Definition: jet.h:426
gtsam::EquivInertialNavFactor_GlobalVel::PreIntegrateIMUObservations_delta_pos
static Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0)
Definition: EquivInertialNavFactor_GlobalVel.h:529
gtsam::DefaultKeyFormatter
KeyFormatter DefaultKeyFormatter
Assign default key formatter.
Definition: Key.cpp:30
Rot3.h
3D rotation represented as a rotation matrix or quaternion
gtsam::EquivInertialNavFactor_GlobalVel::Calc_g_rho_omega_earth_ENU
static void Calc_g_rho_omega_earth_ENU(const Vector &Pos_ENU, const Vector &Vel_ENU, const Vector &LatLonHeight_IC, const Vector &Pos_ENU_Initial, Vector &g_ENU, Vector &rho_ENU, Vector &omega_earth_ENU)
Definition: EquivInertialNavFactor_GlobalVel.h:643
gtsam::EquivInertialNavFactor_GlobalVel::world_g_
Vector world_g_
Definition: EquivInertialNavFactor_GlobalVel.h:100
Expmap
Pose2_ Expmap(const Vector3_ &xi)
Definition: InverseKinematicsExampleExpressions.cpp:47
gtsam::EquivInertialNavFactor_GlobalVel::CalcEquivalentNoiseCov_DifferentParts
static void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr &gaussian_acc, const noiseModel::Gaussian::shared_ptr &gaussian_gyro, const noiseModel::Gaussian::shared_ptr &gaussian_process, Matrix &cov_acc, Matrix &cov_gyro, Matrix &cov_process_without_acc_gyro)
Definition: EquivInertialNavFactor_GlobalVel.h:604
simple::R0
static Rot3 R0
Definition: testInitializePose3.cpp:48
gtsam::EquivInertialNavFactor_GlobalVel::CalcEquivalentNoiseCov
static noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr &gaussian_acc, const noiseModel::Gaussian::shared_ptr &gaussian_gyro, const noiseModel::Gaussian::shared_ptr &gaussian_process)
Definition: EquivInertialNavFactor_GlobalVel.h:591
numericalDerivative.h
Some functions to compute numerical derivatives.
gtsam::EquivInertialNavFactor_GlobalVel
Definition: EquivInertialNavFactor_GlobalVel.h:88
gtsam::EquivInertialNavFactor_GlobalVel::evaluateError
Vector evaluateError(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const POSE &Pose2, const VELOCITY &Vel2, OptionalMatrixType H1, OptionalMatrixType H2, OptionalMatrixType H3, OptionalMatrixType H4, OptionalMatrixType H5) const override
Definition: EquivInertialNavFactor_GlobalVel.h:301
world_rho
static const Vector3 world_rho(0.0, -1.5724e-05, 0.0)
gtsam::Rot3
Rot3 is a 3D rotation represented as a rotation matrix if the preprocessor symbol GTSAM_USE_QUATERNIO...
Definition: Rot3.h:58
gtsam::EquivInertialNavFactor_GlobalVel::PredictVelocityFromPreIntegration
static VELOCITY PredictVelocityFromPreIntegration(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const Vector &delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const Matrix &Jacobian_wrt_t0_Overall, const std::optional< IMUBIAS > &Bias_initial={})
Definition: EquivInertialNavFactor_GlobalVel.h:411
gtsam::KeyFormatter
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
gtsam::stack
Matrix stack(size_t nrMatrices,...)
Definition: Matrix.cpp:395
gtsam::EquivInertialNavFactor_GlobalVel::predictPose
POSE predictPose(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1) const
Definition: EquivInertialNavFactor_GlobalVel.h:171
C1
Definition: test_operator_overloading.cpp:97
gtsam::NoiseModelFactorN
Definition: NonlinearFactor.h:431
cholesky::expected
Matrix expected
Definition: testMatrix.cpp:971
gtsam::EquivInertialNavFactor_GlobalVel::Calc_g_rho_omega_earth_NED
static void Calc_g_rho_omega_earth_NED(const Vector &Pos_NED, const Vector &Vel_NED, const Vector &LatLonHeight_IC, const Vector &Pos_NED_Initial, Vector &g_NED, Vector &rho_NED, Vector &omega_earth_NED)
Definition: EquivInertialNavFactor_GlobalVel.h:613
gtsam::noiseModel::Gaussian::SqrtInformation
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
Definition: NoiseModel.cpp:83
gtsam::NoiseModelFactor::equals
bool equals(const NonlinearFactor &f, double tol=1e-9) const override
Definition: NonlinearFactor.cpp:80
gtsam::EquivInertialNavFactor_GlobalVel::delta_pos_in_t0_
Vector delta_pos_in_t0_
Definition: EquivInertialNavFactor_GlobalVel.h:95
gtsam::NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY >::key1
Key key1() const
Definition: NonlinearFactor.h:731
tan
const EIGEN_DEVICE_FUNC TanReturnType tan() const
Definition: ArrayCwiseUnaryOps.h:269
ceres::pow
Jet< T, N > pow(const Jet< T, N > &f, double g)
Definition: jet.h:570
gtsam::EquivInertialNavFactor_GlobalVel::predictVelocity_inertial
static VELOCITY predictVelocity_inertial(const POSE &Pose1, const VELOCITY &Vel1, const Vector &delta_vel_in_t0, const double dt12, const Vector &world_g, const Vector &world_rho, const Vector &world_omega_earth)
Definition: EquivInertialNavFactor_GlobalVel.h:256
gtsam::symbol_shorthand::F
Key F(std::uint64_t j)
Definition: inference/Symbol.h:153
model
noiseModel::Diagonal::shared_ptr model
Definition: doc/Code/Pose2SLAMExample.cpp:7
gtsam::EquivInertialNavFactor_GlobalVel::EquivInertialNavFactor_GlobalVel
EquivInertialNavFactor_GlobalVel(const Key &Pose1, const Key &Vel1, const Key &IMUBias1, const Key &Pose2, const Key &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const noiseModel::Gaussian::shared_ptr &model_equivalent, const Matrix &Jacobian_wrt_t0_Overall, std::optional< IMUBIAS > Bias_initial={}, std::optional< POSE > body_P_sensor={})
Definition: EquivInertialNavFactor_GlobalVel.h:121
gtsam::EquivInertialNavFactor_GlobalVel::world_rho_
Vector world_rho_
Definition: EquivInertialNavFactor_GlobalVel.h:101
gtsam::EquivInertialNavFactor_GlobalVel::calc_descrete_noise_model
static noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr &model, double delta_t)
Definition: EquivInertialNavFactor_GlobalVel.h:698
NonlinearFactor.h
Non-linear factor base classes.
gtsam::NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY >::key2
Key key2() const
Definition: NonlinearFactor.h:735
gtsam::Pose2::translation
const Point2 & translation(OptionalJacobian< 2, 3 > Hself={}) const
translation
Definition: Pose2.h:261
gtsam
traits
Definition: SFMdata.h:40
NoiseModel.h
gtsam::EquivInertialNavFactor_GlobalVel::delta_angles_
Vector3 delta_angles_
Definition: EquivInertialNavFactor_GlobalVel.h:97
gtsam::NonlinearFactor
Definition: NonlinearFactor.h:68
gtsam::Rot3::Expmap
static Rot3 Expmap(const Vector3 &v, OptionalJacobian< 3, 3 > H={})
Definition: Rot3.h:374
gtsam::EquivInertialNavFactor_GlobalVel::delta_vel_in_t0_
Vector delta_vel_in_t0_
Definition: EquivInertialNavFactor_GlobalVel.h:96
gtsam::EquivInertialNavFactor_GlobalVel::dt12_
double dt12_
Definition: EquivInertialNavFactor_GlobalVel.h:98
gtsam::Rot3::matrix
Matrix3 matrix() const
Definition: Rot3M.cpp:218
gtsam::NoiseModelFactorN< POSE, VELOCITY, IMUBIAS, POSE, VELOCITY >::key3
Key key3() const
Definition: NonlinearFactor.h:740
gtsam::tol
const G double tol
Definition: Group.h:79
gtsam::Rot3::Logmap
static Vector3 Logmap(const Rot3 &R, OptionalJacobian< 3, 3 > H={})
Definition: Rot3M.cpp:157
gtsam::OptionalMatrixType
Matrix * OptionalMatrixType
Definition: NonlinearFactor.h:55
gtsam::EquivInertialNavFactor_GlobalVel::PreIntegrateIMUObservations_delta_angles
static Vector PreIntegrateIMUObservations_delta_angles(const Vector &msr_gyro_t, const double msr_dt, const Vector3 &delta_angles, const bool flag_use_body_P_sensor, const POSE &body_P_sensor, IMUBIAS Bias_t0=IMUBIAS())
Definition: EquivInertialNavFactor_GlobalVel.h:568
gtsam::EquivInertialNavFactor_GlobalVel::PreIntegrateIMUObservations_delta_vel
static Vector PreIntegrateIMUObservations_delta_vel(const Vector &msr_gyro_t, const Vector &msr_acc_t, const double msr_dt, const Vector3 &delta_angles, const Vector &delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE &body_P_sensor, IMUBIAS Bias_t0=IMUBIAS())
Definition: EquivInertialNavFactor_GlobalVel.h:540
gtsam::EquivInertialNavFactor_GlobalVel::predictVelocity
VELOCITY predictVelocity(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1) const
Definition: EquivInertialNavFactor_GlobalVel.h:236
gtsam::collect
Matrix collect(const std::vector< const Matrix * > &matrices, size_t m, size_t n)
Definition: Matrix.cpp:441
gtsam::EquivInertialNavFactor_GlobalVel::EquivInertialNavFactor_GlobalVel
EquivInertialNavFactor_GlobalVel()
Definition: EquivInertialNavFactor_GlobalVel.h:118
world_omega_earth
gtsam::Vector world_omega_earth(world_R_ECEF.matrix() *ECEF_omega_earth)
gtsam::EquivInertialNavFactor_GlobalVel::predictPose_inertial
static POSE predictPose_inertial(const POSE &Pose1, const VELOCITY &Vel1, const Vector &delta_pos_in_t0, const Vector3 &delta_angles, const double dt12, const Vector &world_g, const Vector &world_rho, const Vector &world_omega_earth)
Definition: EquivInertialNavFactor_GlobalVel.h:198
gtsam::Key
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:97
ceres::sqrt
Jet< T, N > sqrt(const Jet< T, N > &f)
Definition: jet.h:418
gtsam::EquivInertialNavFactor_GlobalVel::Jacobian_wrt_t0_Overall_
Matrix Jacobian_wrt_t0_Overall_
Definition: EquivInertialNavFactor_GlobalVel.h:104
gtsam::noiseModel::Gaussian::Covariance
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
Definition: NoiseModel.cpp:114
gtsam::Pose2
Definition: Pose2.h:39


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:15