Go to the documentation of this file.
64 static double Point(
size_t N,
int j,
double a = -1,
double b = 1) {
65 assert(
j >= 0 &&
size_t(
j) <
N);
66 const double dtheta =
M_PI / (
N > 1 ? (
N - 1) : 1);
69 return a + (
b -
a) * (1. +
cos(-
M_PI + dtheta *
j)) / 2;
75 for (
size_t j = 0;
j <
N;
j++) {
76 points(
j) = Point(
N,
j);
84 const double T1 = (
a +
b) / 2,
T2 = (
b -
a) / 2;
97 static Weights CalculateWeights(
size_t N,
double x,
double a = -1,
104 static Weights DerivativeWeights(
size_t N,
double x,
double a = -1,
111 static DiffMatrix DifferentiationMatrix(
size_t N,
double a = -1,
132 static Weights IntegrationWeights(
size_t N,
double a = -1,
double b = 1);
139 size_t N,
double a = -1,
double b = 1) {
141 for (
size_t j = 0;
j <
N;
j++) {
142 Xmat.col(
j) =
f(Point(
N,
j,
a,
b));
static Matrix matrix(std::function< Eigen::Matrix< double, M, 1 >(double)> f, size_t N, double a=-1, double b=1)
static double Point(size_t N, int j, double a=-1, double b=1)
Specific Chebyshev point, within [a,b] interval. Default interval is [-1, 1].
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Jet< T, N > cos(const Jet< T, N > &f)
static Vector Points(size_t N)
All Chebyshev points.
Compute an interpolating basis.
Base class and basic functions for Manifold types.
Special class for optional Jacobian arguments.
static const Pose3 T2(Rot3::Rodrigues(0.3, 0.2, 0.1), P2)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
static Vector Points(size_t N, double a, double b)
All Chebyshev points, within [a,b] interval.
static const Similarity3 T1(R, Point3(3.5, -8.2, 4.2), 1)
Matrix< RealScalar, Dynamic, Dynamic > M
gtsam
Author(s):
autogenerated on Fri Nov 1 2024 03:32:05