$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/rgbd_assembler/srv/RgbdAssembly.srv */ 00002 #ifndef RGBD_ASSEMBLER_SERVICE_RGBDASSEMBLY_H 00003 #define RGBD_ASSEMBLER_SERVICE_RGBDASSEMBLY_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 00020 00021 #include "sensor_msgs/PointCloud2.h" 00022 #include "sensor_msgs/Image.h" 00023 #include "stereo_msgs/DisparityImage.h" 00024 #include "sensor_msgs/CameraInfo.h" 00025 00026 namespace rgbd_assembler 00027 { 00028 template <class ContainerAllocator> 00029 struct RgbdAssemblyRequest_ { 00030 typedef RgbdAssemblyRequest_<ContainerAllocator> Type; 00031 00032 RgbdAssemblyRequest_() 00033 { 00034 } 00035 00036 RgbdAssemblyRequest_(const ContainerAllocator& _alloc) 00037 { 00038 } 00039 00040 00041 private: 00042 static const char* __s_getDataType_() { return "rgbd_assembler/RgbdAssemblyRequest"; } 00043 public: 00044 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00045 00046 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00047 00048 private: 00049 static const char* __s_getMD5Sum_() { return "d41d8cd98f00b204e9800998ecf8427e"; } 00050 public: 00051 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00052 00053 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00054 00055 private: 00056 static const char* __s_getServerMD5Sum_() { return "258b6f93e1876c2777ab914303667a41"; } 00057 public: 00058 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00059 00060 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00061 00062 private: 00063 static const char* __s_getMessageDefinition_() { return "\n\ 00064 \n\ 00065 \n\ 00066 "; } 00067 public: 00068 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00069 00070 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00071 00072 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00073 { 00074 ros::serialization::OStream stream(write_ptr, 1000000000); 00075 return stream.getData(); 00076 } 00077 00078 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00079 { 00080 ros::serialization::IStream stream(read_ptr, 1000000000); 00081 return stream.getData(); 00082 } 00083 00084 ROS_DEPRECATED virtual uint32_t serializationLength() const 00085 { 00086 uint32_t size = 0; 00087 return size; 00088 } 00089 00090 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > Ptr; 00091 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> const> ConstPtr; 00092 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00093 }; // struct RgbdAssemblyRequest 00094 typedef ::rgbd_assembler::RgbdAssemblyRequest_<std::allocator<void> > RgbdAssemblyRequest; 00095 00096 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest> RgbdAssemblyRequestPtr; 00097 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest const> RgbdAssemblyRequestConstPtr; 00098 00099 00100 template <class ContainerAllocator> 00101 struct RgbdAssemblyResponse_ { 00102 typedef RgbdAssemblyResponse_<ContainerAllocator> Type; 00103 00104 RgbdAssemblyResponse_() 00105 : point_cloud() 00106 , image() 00107 , disparity_image() 00108 , camera_info() 00109 , result(0) 00110 { 00111 } 00112 00113 RgbdAssemblyResponse_(const ContainerAllocator& _alloc) 00114 : point_cloud(_alloc) 00115 , image(_alloc) 00116 , disparity_image(_alloc) 00117 , camera_info(_alloc) 00118 , result(0) 00119 { 00120 } 00121 00122 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _point_cloud_type; 00123 ::sensor_msgs::PointCloud2_<ContainerAllocator> point_cloud; 00124 00125 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00126 ::sensor_msgs::Image_<ContainerAllocator> image; 00127 00128 typedef ::stereo_msgs::DisparityImage_<ContainerAllocator> _disparity_image_type; 00129 ::stereo_msgs::DisparityImage_<ContainerAllocator> disparity_image; 00130 00131 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00132 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00133 00134 typedef int32_t _result_type; 00135 int32_t result; 00136 00137 enum { OTHER_ERROR = 1 }; 00138 enum { SUCCESS = 2 }; 00139 00140 private: 00141 static const char* __s_getDataType_() { return "rgbd_assembler/RgbdAssemblyResponse"; } 00142 public: 00143 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00144 00145 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00146 00147 private: 00148 static const char* __s_getMD5Sum_() { return "258b6f93e1876c2777ab914303667a41"; } 00149 public: 00150 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00151 00152 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00153 00154 private: 00155 static const char* __s_getServerMD5Sum_() { return "258b6f93e1876c2777ab914303667a41"; } 00156 public: 00157 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00158 00159 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00160 00161 private: 00162 static const char* __s_getMessageDefinition_() { return "\n\ 00163 \n\ 00164 \n\ 00165 \n\ 00166 sensor_msgs/PointCloud2 point_cloud\n\ 00167 \n\ 00168 \n\ 00169 sensor_msgs/Image image\n\ 00170 \n\ 00171 \n\ 00172 stereo_msgs/DisparityImage disparity_image\n\ 00173 \n\ 00174 \n\ 00175 sensor_msgs/CameraInfo camera_info\n\ 00176 \n\ 00177 \n\ 00178 int32 OTHER_ERROR = 1\n\ 00179 int32 SUCCESS = 2\n\ 00180 int32 result\n\ 00181 \n\ 00182 ================================================================================\n\ 00183 MSG: sensor_msgs/PointCloud2\n\ 00184 # This message holds a collection of N-dimensional points, which may\n\ 00185 # contain additional information such as normals, intensity, etc. The\n\ 00186 # point data is stored as a binary blob, its layout described by the\n\ 00187 # contents of the \"fields\" array.\n\ 00188 \n\ 00189 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00190 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00191 # camera depth sensors such as stereo or time-of-flight.\n\ 00192 \n\ 00193 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00194 # points).\n\ 00195 Header header\n\ 00196 \n\ 00197 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00198 # 1 and width is the length of the point cloud.\n\ 00199 uint32 height\n\ 00200 uint32 width\n\ 00201 \n\ 00202 # Describes the channels and their layout in the binary data blob.\n\ 00203 PointField[] fields\n\ 00204 \n\ 00205 bool is_bigendian # Is this data bigendian?\n\ 00206 uint32 point_step # Length of a point in bytes\n\ 00207 uint32 row_step # Length of a row in bytes\n\ 00208 uint8[] data # Actual point data, size is (row_step*height)\n\ 00209 \n\ 00210 bool is_dense # True if there are no invalid points\n\ 00211 \n\ 00212 ================================================================================\n\ 00213 MSG: std_msgs/Header\n\ 00214 # Standard metadata for higher-level stamped data types.\n\ 00215 # This is generally used to communicate timestamped data \n\ 00216 # in a particular coordinate frame.\n\ 00217 # \n\ 00218 # sequence ID: consecutively increasing ID \n\ 00219 uint32 seq\n\ 00220 #Two-integer timestamp that is expressed as:\n\ 00221 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00222 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00223 # time-handling sugar is provided by the client library\n\ 00224 time stamp\n\ 00225 #Frame this data is associated with\n\ 00226 # 0: no frame\n\ 00227 # 1: global frame\n\ 00228 string frame_id\n\ 00229 \n\ 00230 ================================================================================\n\ 00231 MSG: sensor_msgs/PointField\n\ 00232 # This message holds the description of one point entry in the\n\ 00233 # PointCloud2 message format.\n\ 00234 uint8 INT8 = 1\n\ 00235 uint8 UINT8 = 2\n\ 00236 uint8 INT16 = 3\n\ 00237 uint8 UINT16 = 4\n\ 00238 uint8 INT32 = 5\n\ 00239 uint8 UINT32 = 6\n\ 00240 uint8 FLOAT32 = 7\n\ 00241 uint8 FLOAT64 = 8\n\ 00242 \n\ 00243 string name # Name of field\n\ 00244 uint32 offset # Offset from start of point struct\n\ 00245 uint8 datatype # Datatype enumeration, see above\n\ 00246 uint32 count # How many elements in the field\n\ 00247 \n\ 00248 ================================================================================\n\ 00249 MSG: sensor_msgs/Image\n\ 00250 # This message contains an uncompressed image\n\ 00251 # (0, 0) is at top-left corner of image\n\ 00252 #\n\ 00253 \n\ 00254 Header header # Header timestamp should be acquisition time of image\n\ 00255 # Header frame_id should be optical frame of camera\n\ 00256 # origin of frame should be optical center of cameara\n\ 00257 # +x should point to the right in the image\n\ 00258 # +y should point down in the image\n\ 00259 # +z should point into to plane of the image\n\ 00260 # If the frame_id here and the frame_id of the CameraInfo\n\ 00261 # message associated with the image conflict\n\ 00262 # the behavior is undefined\n\ 00263 \n\ 00264 uint32 height # image height, that is, number of rows\n\ 00265 uint32 width # image width, that is, number of columns\n\ 00266 \n\ 00267 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00268 # If you want to standardize a new string format, join\n\ 00269 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00270 \n\ 00271 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00272 # taken from the list of strings in src/image_encodings.cpp\n\ 00273 \n\ 00274 uint8 is_bigendian # is this data bigendian?\n\ 00275 uint32 step # Full row length in bytes\n\ 00276 uint8[] data # actual matrix data, size is (step * rows)\n\ 00277 \n\ 00278 ================================================================================\n\ 00279 MSG: stereo_msgs/DisparityImage\n\ 00280 # Separate header for compatibility with current TimeSynchronizer.\n\ 00281 # Likely to be removed in a later release, use image.header instead.\n\ 00282 Header header\n\ 00283 \n\ 00284 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00285 # x-offset between the principal points of the two cameras (in the case\n\ 00286 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00287 sensor_msgs/Image image\n\ 00288 \n\ 00289 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00290 float32 f # Focal length, pixels\n\ 00291 float32 T # Baseline, world units\n\ 00292 \n\ 00293 # Subwindow of (potentially) valid disparity values.\n\ 00294 sensor_msgs/RegionOfInterest valid_window\n\ 00295 \n\ 00296 # The range of disparities searched.\n\ 00297 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00298 # The disparity search range defines the horopter, or 3D volume that the\n\ 00299 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00300 # Z_min = fT / max_disparity\n\ 00301 # Z_max = fT / min_disparity\n\ 00302 # could not be found.\n\ 00303 float32 min_disparity\n\ 00304 float32 max_disparity\n\ 00305 \n\ 00306 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00307 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00308 float32 delta_d\n\ 00309 \n\ 00310 ================================================================================\n\ 00311 MSG: sensor_msgs/RegionOfInterest\n\ 00312 # This message is used to specify a region of interest within an image.\n\ 00313 #\n\ 00314 # When used to specify the ROI setting of the camera when the image was\n\ 00315 # taken, the height and width fields should either match the height and\n\ 00316 # width fields for the associated image; or height = width = 0\n\ 00317 # indicates that the full resolution image was captured.\n\ 00318 \n\ 00319 uint32 x_offset # Leftmost pixel of the ROI\n\ 00320 # (0 if the ROI includes the left edge of the image)\n\ 00321 uint32 y_offset # Topmost pixel of the ROI\n\ 00322 # (0 if the ROI includes the top edge of the image)\n\ 00323 uint32 height # Height of ROI\n\ 00324 uint32 width # Width of ROI\n\ 00325 \n\ 00326 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00327 # ROI in this message. Typically this should be False if the full image\n\ 00328 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00329 # used).\n\ 00330 bool do_rectify\n\ 00331 \n\ 00332 ================================================================================\n\ 00333 MSG: sensor_msgs/CameraInfo\n\ 00334 # This message defines meta information for a camera. It should be in a\n\ 00335 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00336 # image topics named:\n\ 00337 #\n\ 00338 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00339 # image - monochrome, distorted\n\ 00340 # image_color - color, distorted\n\ 00341 # image_rect - monochrome, rectified\n\ 00342 # image_rect_color - color, rectified\n\ 00343 #\n\ 00344 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00345 # for producing the four processed image topics from image_raw and\n\ 00346 # camera_info. The meaning of the camera parameters are described in\n\ 00347 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00348 #\n\ 00349 # The image_geometry package provides a user-friendly interface to\n\ 00350 # common operations using this meta information. If you want to, e.g.,\n\ 00351 # project a 3d point into image coordinates, we strongly recommend\n\ 00352 # using image_geometry.\n\ 00353 #\n\ 00354 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00355 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00356 # indicates an uncalibrated camera.\n\ 00357 \n\ 00358 #######################################################################\n\ 00359 # Image acquisition info #\n\ 00360 #######################################################################\n\ 00361 \n\ 00362 # Time of image acquisition, camera coordinate frame ID\n\ 00363 Header header # Header timestamp should be acquisition time of image\n\ 00364 # Header frame_id should be optical frame of camera\n\ 00365 # origin of frame should be optical center of camera\n\ 00366 # +x should point to the right in the image\n\ 00367 # +y should point down in the image\n\ 00368 # +z should point into the plane of the image\n\ 00369 \n\ 00370 \n\ 00371 #######################################################################\n\ 00372 # Calibration Parameters #\n\ 00373 #######################################################################\n\ 00374 # These are fixed during camera calibration. Their values will be the #\n\ 00375 # same in all messages until the camera is recalibrated. Note that #\n\ 00376 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00377 # #\n\ 00378 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00379 # to: #\n\ 00380 # 1. An undistorted image (requires D and K) #\n\ 00381 # 2. A rectified image (requires D, K, R) #\n\ 00382 # The projection matrix P projects 3D points into the rectified image.#\n\ 00383 #######################################################################\n\ 00384 \n\ 00385 # The image dimensions with which the camera was calibrated. Normally\n\ 00386 # this will be the full camera resolution in pixels.\n\ 00387 uint32 height\n\ 00388 uint32 width\n\ 00389 \n\ 00390 # The distortion model used. Supported models are listed in\n\ 00391 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00392 # simple model of radial and tangential distortion - is sufficent.\n\ 00393 string distortion_model\n\ 00394 \n\ 00395 # The distortion parameters, size depending on the distortion model.\n\ 00396 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00397 float64[] D\n\ 00398 \n\ 00399 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00400 # [fx 0 cx]\n\ 00401 # K = [ 0 fy cy]\n\ 00402 # [ 0 0 1]\n\ 00403 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00404 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00405 # (cx, cy).\n\ 00406 float64[9] K # 3x3 row-major matrix\n\ 00407 \n\ 00408 # Rectification matrix (stereo cameras only)\n\ 00409 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00410 # stereo image plane so that epipolar lines in both stereo images are\n\ 00411 # parallel.\n\ 00412 float64[9] R # 3x3 row-major matrix\n\ 00413 \n\ 00414 # Projection/camera matrix\n\ 00415 # [fx' 0 cx' Tx]\n\ 00416 # P = [ 0 fy' cy' Ty]\n\ 00417 # [ 0 0 1 0]\n\ 00418 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00419 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00420 # is the normal camera intrinsic matrix for the rectified image.\n\ 00421 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00422 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00423 # (cx', cy') - these may differ from the values in K.\n\ 00424 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00425 # also have R = the identity and P[1:3,1:3] = K.\n\ 00426 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00427 # position of the optical center of the second camera in the first\n\ 00428 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00429 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00430 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00431 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00432 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00433 # the rectified image is given by:\n\ 00434 # [u v w]' = P * [X Y Z 1]'\n\ 00435 # x = u / w\n\ 00436 # y = v / w\n\ 00437 # This holds for both images of a stereo pair.\n\ 00438 float64[12] P # 3x4 row-major matrix\n\ 00439 \n\ 00440 \n\ 00441 #######################################################################\n\ 00442 # Operational Parameters #\n\ 00443 #######################################################################\n\ 00444 # These define the image region actually captured by the camera #\n\ 00445 # driver. Although they affect the geometry of the output image, they #\n\ 00446 # may be changed freely without recalibrating the camera. #\n\ 00447 #######################################################################\n\ 00448 \n\ 00449 # Binning refers here to any camera setting which combines rectangular\n\ 00450 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00451 # resolution of the output image to\n\ 00452 # (width / binning_x) x (height / binning_y).\n\ 00453 # The default values binning_x = binning_y = 0 is considered the same\n\ 00454 # as binning_x = binning_y = 1 (no subsampling).\n\ 00455 uint32 binning_x\n\ 00456 uint32 binning_y\n\ 00457 \n\ 00458 # Region of interest (subwindow of full camera resolution), given in\n\ 00459 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00460 # always denotes the same window of pixels on the camera sensor,\n\ 00461 # regardless of binning settings.\n\ 00462 # The default setting of roi (all values 0) is considered the same as\n\ 00463 # full resolution (roi.width = width, roi.height = height).\n\ 00464 RegionOfInterest roi\n\ 00465 \n\ 00466 "; } 00467 public: 00468 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00469 00470 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00471 00472 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00473 { 00474 ros::serialization::OStream stream(write_ptr, 1000000000); 00475 ros::serialization::serialize(stream, point_cloud); 00476 ros::serialization::serialize(stream, image); 00477 ros::serialization::serialize(stream, disparity_image); 00478 ros::serialization::serialize(stream, camera_info); 00479 ros::serialization::serialize(stream, result); 00480 return stream.getData(); 00481 } 00482 00483 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00484 { 00485 ros::serialization::IStream stream(read_ptr, 1000000000); 00486 ros::serialization::deserialize(stream, point_cloud); 00487 ros::serialization::deserialize(stream, image); 00488 ros::serialization::deserialize(stream, disparity_image); 00489 ros::serialization::deserialize(stream, camera_info); 00490 ros::serialization::deserialize(stream, result); 00491 return stream.getData(); 00492 } 00493 00494 ROS_DEPRECATED virtual uint32_t serializationLength() const 00495 { 00496 uint32_t size = 0; 00497 size += ros::serialization::serializationLength(point_cloud); 00498 size += ros::serialization::serializationLength(image); 00499 size += ros::serialization::serializationLength(disparity_image); 00500 size += ros::serialization::serializationLength(camera_info); 00501 size += ros::serialization::serializationLength(result); 00502 return size; 00503 } 00504 00505 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > Ptr; 00506 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> const> ConstPtr; 00507 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00508 }; // struct RgbdAssemblyResponse 00509 typedef ::rgbd_assembler::RgbdAssemblyResponse_<std::allocator<void> > RgbdAssemblyResponse; 00510 00511 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse> RgbdAssemblyResponsePtr; 00512 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse const> RgbdAssemblyResponseConstPtr; 00513 00514 struct RgbdAssembly 00515 { 00516 00517 typedef RgbdAssemblyRequest Request; 00518 typedef RgbdAssemblyResponse Response; 00519 Request request; 00520 Response response; 00521 00522 typedef Request RequestType; 00523 typedef Response ResponseType; 00524 }; // struct RgbdAssembly 00525 } // namespace rgbd_assembler 00526 00527 namespace ros 00528 { 00529 namespace message_traits 00530 { 00531 template<class ContainerAllocator> struct IsMessage< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > : public TrueType {}; 00532 template<class ContainerAllocator> struct IsMessage< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> const> : public TrueType {}; 00533 template<class ContainerAllocator> 00534 struct MD5Sum< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > { 00535 static const char* value() 00536 { 00537 return "d41d8cd98f00b204e9800998ecf8427e"; 00538 } 00539 00540 static const char* value(const ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); } 00541 static const uint64_t static_value1 = 0xd41d8cd98f00b204ULL; 00542 static const uint64_t static_value2 = 0xe9800998ecf8427eULL; 00543 }; 00544 00545 template<class ContainerAllocator> 00546 struct DataType< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > { 00547 static const char* value() 00548 { 00549 return "rgbd_assembler/RgbdAssemblyRequest"; 00550 } 00551 00552 static const char* value(const ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); } 00553 }; 00554 00555 template<class ContainerAllocator> 00556 struct Definition< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > { 00557 static const char* value() 00558 { 00559 return "\n\ 00560 \n\ 00561 \n\ 00562 "; 00563 } 00564 00565 static const char* value(const ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); } 00566 }; 00567 00568 template<class ContainerAllocator> struct IsFixedSize< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > : public TrueType {}; 00569 } // namespace message_traits 00570 } // namespace ros 00571 00572 00573 namespace ros 00574 { 00575 namespace message_traits 00576 { 00577 template<class ContainerAllocator> struct IsMessage< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > : public TrueType {}; 00578 template<class ContainerAllocator> struct IsMessage< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> const> : public TrueType {}; 00579 template<class ContainerAllocator> 00580 struct MD5Sum< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > { 00581 static const char* value() 00582 { 00583 return "258b6f93e1876c2777ab914303667a41"; 00584 } 00585 00586 static const char* value(const ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); } 00587 static const uint64_t static_value1 = 0x258b6f93e1876c27ULL; 00588 static const uint64_t static_value2 = 0x77ab914303667a41ULL; 00589 }; 00590 00591 template<class ContainerAllocator> 00592 struct DataType< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > { 00593 static const char* value() 00594 { 00595 return "rgbd_assembler/RgbdAssemblyResponse"; 00596 } 00597 00598 static const char* value(const ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); } 00599 }; 00600 00601 template<class ContainerAllocator> 00602 struct Definition< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > { 00603 static const char* value() 00604 { 00605 return "\n\ 00606 \n\ 00607 \n\ 00608 \n\ 00609 sensor_msgs/PointCloud2 point_cloud\n\ 00610 \n\ 00611 \n\ 00612 sensor_msgs/Image image\n\ 00613 \n\ 00614 \n\ 00615 stereo_msgs/DisparityImage disparity_image\n\ 00616 \n\ 00617 \n\ 00618 sensor_msgs/CameraInfo camera_info\n\ 00619 \n\ 00620 \n\ 00621 int32 OTHER_ERROR = 1\n\ 00622 int32 SUCCESS = 2\n\ 00623 int32 result\n\ 00624 \n\ 00625 ================================================================================\n\ 00626 MSG: sensor_msgs/PointCloud2\n\ 00627 # This message holds a collection of N-dimensional points, which may\n\ 00628 # contain additional information such as normals, intensity, etc. The\n\ 00629 # point data is stored as a binary blob, its layout described by the\n\ 00630 # contents of the \"fields\" array.\n\ 00631 \n\ 00632 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00633 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00634 # camera depth sensors such as stereo or time-of-flight.\n\ 00635 \n\ 00636 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00637 # points).\n\ 00638 Header header\n\ 00639 \n\ 00640 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00641 # 1 and width is the length of the point cloud.\n\ 00642 uint32 height\n\ 00643 uint32 width\n\ 00644 \n\ 00645 # Describes the channels and their layout in the binary data blob.\n\ 00646 PointField[] fields\n\ 00647 \n\ 00648 bool is_bigendian # Is this data bigendian?\n\ 00649 uint32 point_step # Length of a point in bytes\n\ 00650 uint32 row_step # Length of a row in bytes\n\ 00651 uint8[] data # Actual point data, size is (row_step*height)\n\ 00652 \n\ 00653 bool is_dense # True if there are no invalid points\n\ 00654 \n\ 00655 ================================================================================\n\ 00656 MSG: std_msgs/Header\n\ 00657 # Standard metadata for higher-level stamped data types.\n\ 00658 # This is generally used to communicate timestamped data \n\ 00659 # in a particular coordinate frame.\n\ 00660 # \n\ 00661 # sequence ID: consecutively increasing ID \n\ 00662 uint32 seq\n\ 00663 #Two-integer timestamp that is expressed as:\n\ 00664 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00665 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00666 # time-handling sugar is provided by the client library\n\ 00667 time stamp\n\ 00668 #Frame this data is associated with\n\ 00669 # 0: no frame\n\ 00670 # 1: global frame\n\ 00671 string frame_id\n\ 00672 \n\ 00673 ================================================================================\n\ 00674 MSG: sensor_msgs/PointField\n\ 00675 # This message holds the description of one point entry in the\n\ 00676 # PointCloud2 message format.\n\ 00677 uint8 INT8 = 1\n\ 00678 uint8 UINT8 = 2\n\ 00679 uint8 INT16 = 3\n\ 00680 uint8 UINT16 = 4\n\ 00681 uint8 INT32 = 5\n\ 00682 uint8 UINT32 = 6\n\ 00683 uint8 FLOAT32 = 7\n\ 00684 uint8 FLOAT64 = 8\n\ 00685 \n\ 00686 string name # Name of field\n\ 00687 uint32 offset # Offset from start of point struct\n\ 00688 uint8 datatype # Datatype enumeration, see above\n\ 00689 uint32 count # How many elements in the field\n\ 00690 \n\ 00691 ================================================================================\n\ 00692 MSG: sensor_msgs/Image\n\ 00693 # This message contains an uncompressed image\n\ 00694 # (0, 0) is at top-left corner of image\n\ 00695 #\n\ 00696 \n\ 00697 Header header # Header timestamp should be acquisition time of image\n\ 00698 # Header frame_id should be optical frame of camera\n\ 00699 # origin of frame should be optical center of cameara\n\ 00700 # +x should point to the right in the image\n\ 00701 # +y should point down in the image\n\ 00702 # +z should point into to plane of the image\n\ 00703 # If the frame_id here and the frame_id of the CameraInfo\n\ 00704 # message associated with the image conflict\n\ 00705 # the behavior is undefined\n\ 00706 \n\ 00707 uint32 height # image height, that is, number of rows\n\ 00708 uint32 width # image width, that is, number of columns\n\ 00709 \n\ 00710 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00711 # If you want to standardize a new string format, join\n\ 00712 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00713 \n\ 00714 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00715 # taken from the list of strings in src/image_encodings.cpp\n\ 00716 \n\ 00717 uint8 is_bigendian # is this data bigendian?\n\ 00718 uint32 step # Full row length in bytes\n\ 00719 uint8[] data # actual matrix data, size is (step * rows)\n\ 00720 \n\ 00721 ================================================================================\n\ 00722 MSG: stereo_msgs/DisparityImage\n\ 00723 # Separate header for compatibility with current TimeSynchronizer.\n\ 00724 # Likely to be removed in a later release, use image.header instead.\n\ 00725 Header header\n\ 00726 \n\ 00727 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00728 # x-offset between the principal points of the two cameras (in the case\n\ 00729 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00730 sensor_msgs/Image image\n\ 00731 \n\ 00732 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00733 float32 f # Focal length, pixels\n\ 00734 float32 T # Baseline, world units\n\ 00735 \n\ 00736 # Subwindow of (potentially) valid disparity values.\n\ 00737 sensor_msgs/RegionOfInterest valid_window\n\ 00738 \n\ 00739 # The range of disparities searched.\n\ 00740 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00741 # The disparity search range defines the horopter, or 3D volume that the\n\ 00742 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00743 # Z_min = fT / max_disparity\n\ 00744 # Z_max = fT / min_disparity\n\ 00745 # could not be found.\n\ 00746 float32 min_disparity\n\ 00747 float32 max_disparity\n\ 00748 \n\ 00749 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00750 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00751 float32 delta_d\n\ 00752 \n\ 00753 ================================================================================\n\ 00754 MSG: sensor_msgs/RegionOfInterest\n\ 00755 # This message is used to specify a region of interest within an image.\n\ 00756 #\n\ 00757 # When used to specify the ROI setting of the camera when the image was\n\ 00758 # taken, the height and width fields should either match the height and\n\ 00759 # width fields for the associated image; or height = width = 0\n\ 00760 # indicates that the full resolution image was captured.\n\ 00761 \n\ 00762 uint32 x_offset # Leftmost pixel of the ROI\n\ 00763 # (0 if the ROI includes the left edge of the image)\n\ 00764 uint32 y_offset # Topmost pixel of the ROI\n\ 00765 # (0 if the ROI includes the top edge of the image)\n\ 00766 uint32 height # Height of ROI\n\ 00767 uint32 width # Width of ROI\n\ 00768 \n\ 00769 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00770 # ROI in this message. Typically this should be False if the full image\n\ 00771 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00772 # used).\n\ 00773 bool do_rectify\n\ 00774 \n\ 00775 ================================================================================\n\ 00776 MSG: sensor_msgs/CameraInfo\n\ 00777 # This message defines meta information for a camera. It should be in a\n\ 00778 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00779 # image topics named:\n\ 00780 #\n\ 00781 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00782 # image - monochrome, distorted\n\ 00783 # image_color - color, distorted\n\ 00784 # image_rect - monochrome, rectified\n\ 00785 # image_rect_color - color, rectified\n\ 00786 #\n\ 00787 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00788 # for producing the four processed image topics from image_raw and\n\ 00789 # camera_info. The meaning of the camera parameters are described in\n\ 00790 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00791 #\n\ 00792 # The image_geometry package provides a user-friendly interface to\n\ 00793 # common operations using this meta information. If you want to, e.g.,\n\ 00794 # project a 3d point into image coordinates, we strongly recommend\n\ 00795 # using image_geometry.\n\ 00796 #\n\ 00797 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00798 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00799 # indicates an uncalibrated camera.\n\ 00800 \n\ 00801 #######################################################################\n\ 00802 # Image acquisition info #\n\ 00803 #######################################################################\n\ 00804 \n\ 00805 # Time of image acquisition, camera coordinate frame ID\n\ 00806 Header header # Header timestamp should be acquisition time of image\n\ 00807 # Header frame_id should be optical frame of camera\n\ 00808 # origin of frame should be optical center of camera\n\ 00809 # +x should point to the right in the image\n\ 00810 # +y should point down in the image\n\ 00811 # +z should point into the plane of the image\n\ 00812 \n\ 00813 \n\ 00814 #######################################################################\n\ 00815 # Calibration Parameters #\n\ 00816 #######################################################################\n\ 00817 # These are fixed during camera calibration. Their values will be the #\n\ 00818 # same in all messages until the camera is recalibrated. Note that #\n\ 00819 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00820 # #\n\ 00821 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00822 # to: #\n\ 00823 # 1. An undistorted image (requires D and K) #\n\ 00824 # 2. A rectified image (requires D, K, R) #\n\ 00825 # The projection matrix P projects 3D points into the rectified image.#\n\ 00826 #######################################################################\n\ 00827 \n\ 00828 # The image dimensions with which the camera was calibrated. Normally\n\ 00829 # this will be the full camera resolution in pixels.\n\ 00830 uint32 height\n\ 00831 uint32 width\n\ 00832 \n\ 00833 # The distortion model used. Supported models are listed in\n\ 00834 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00835 # simple model of radial and tangential distortion - is sufficent.\n\ 00836 string distortion_model\n\ 00837 \n\ 00838 # The distortion parameters, size depending on the distortion model.\n\ 00839 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00840 float64[] D\n\ 00841 \n\ 00842 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00843 # [fx 0 cx]\n\ 00844 # K = [ 0 fy cy]\n\ 00845 # [ 0 0 1]\n\ 00846 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00847 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00848 # (cx, cy).\n\ 00849 float64[9] K # 3x3 row-major matrix\n\ 00850 \n\ 00851 # Rectification matrix (stereo cameras only)\n\ 00852 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00853 # stereo image plane so that epipolar lines in both stereo images are\n\ 00854 # parallel.\n\ 00855 float64[9] R # 3x3 row-major matrix\n\ 00856 \n\ 00857 # Projection/camera matrix\n\ 00858 # [fx' 0 cx' Tx]\n\ 00859 # P = [ 0 fy' cy' Ty]\n\ 00860 # [ 0 0 1 0]\n\ 00861 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00862 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00863 # is the normal camera intrinsic matrix for the rectified image.\n\ 00864 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00865 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00866 # (cx', cy') - these may differ from the values in K.\n\ 00867 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00868 # also have R = the identity and P[1:3,1:3] = K.\n\ 00869 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00870 # position of the optical center of the second camera in the first\n\ 00871 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00872 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00873 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00874 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00875 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00876 # the rectified image is given by:\n\ 00877 # [u v w]' = P * [X Y Z 1]'\n\ 00878 # x = u / w\n\ 00879 # y = v / w\n\ 00880 # This holds for both images of a stereo pair.\n\ 00881 float64[12] P # 3x4 row-major matrix\n\ 00882 \n\ 00883 \n\ 00884 #######################################################################\n\ 00885 # Operational Parameters #\n\ 00886 #######################################################################\n\ 00887 # These define the image region actually captured by the camera #\n\ 00888 # driver. Although they affect the geometry of the output image, they #\n\ 00889 # may be changed freely without recalibrating the camera. #\n\ 00890 #######################################################################\n\ 00891 \n\ 00892 # Binning refers here to any camera setting which combines rectangular\n\ 00893 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00894 # resolution of the output image to\n\ 00895 # (width / binning_x) x (height / binning_y).\n\ 00896 # The default values binning_x = binning_y = 0 is considered the same\n\ 00897 # as binning_x = binning_y = 1 (no subsampling).\n\ 00898 uint32 binning_x\n\ 00899 uint32 binning_y\n\ 00900 \n\ 00901 # Region of interest (subwindow of full camera resolution), given in\n\ 00902 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00903 # always denotes the same window of pixels on the camera sensor,\n\ 00904 # regardless of binning settings.\n\ 00905 # The default setting of roi (all values 0) is considered the same as\n\ 00906 # full resolution (roi.width = width, roi.height = height).\n\ 00907 RegionOfInterest roi\n\ 00908 \n\ 00909 "; 00910 } 00911 00912 static const char* value(const ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); } 00913 }; 00914 00915 } // namespace message_traits 00916 } // namespace ros 00917 00918 namespace ros 00919 { 00920 namespace serialization 00921 { 00922 00923 template<class ContainerAllocator> struct Serializer< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > 00924 { 00925 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00926 { 00927 } 00928 00929 ROS_DECLARE_ALLINONE_SERIALIZER; 00930 }; // struct RgbdAssemblyRequest_ 00931 } // namespace serialization 00932 } // namespace ros 00933 00934 00935 namespace ros 00936 { 00937 namespace serialization 00938 { 00939 00940 template<class ContainerAllocator> struct Serializer< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > 00941 { 00942 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00943 { 00944 stream.next(m.point_cloud); 00945 stream.next(m.image); 00946 stream.next(m.disparity_image); 00947 stream.next(m.camera_info); 00948 stream.next(m.result); 00949 } 00950 00951 ROS_DECLARE_ALLINONE_SERIALIZER; 00952 }; // struct RgbdAssemblyResponse_ 00953 } // namespace serialization 00954 } // namespace ros 00955 00956 namespace ros 00957 { 00958 namespace service_traits 00959 { 00960 template<> 00961 struct MD5Sum<rgbd_assembler::RgbdAssembly> { 00962 static const char* value() 00963 { 00964 return "258b6f93e1876c2777ab914303667a41"; 00965 } 00966 00967 static const char* value(const rgbd_assembler::RgbdAssembly&) { return value(); } 00968 }; 00969 00970 template<> 00971 struct DataType<rgbd_assembler::RgbdAssembly> { 00972 static const char* value() 00973 { 00974 return "rgbd_assembler/RgbdAssembly"; 00975 } 00976 00977 static const char* value(const rgbd_assembler::RgbdAssembly&) { return value(); } 00978 }; 00979 00980 template<class ContainerAllocator> 00981 struct MD5Sum<rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > { 00982 static const char* value() 00983 { 00984 return "258b6f93e1876c2777ab914303667a41"; 00985 } 00986 00987 static const char* value(const rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); } 00988 }; 00989 00990 template<class ContainerAllocator> 00991 struct DataType<rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > { 00992 static const char* value() 00993 { 00994 return "rgbd_assembler/RgbdAssembly"; 00995 } 00996 00997 static const char* value(const rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); } 00998 }; 00999 01000 template<class ContainerAllocator> 01001 struct MD5Sum<rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > { 01002 static const char* value() 01003 { 01004 return "258b6f93e1876c2777ab914303667a41"; 01005 } 01006 01007 static const char* value(const rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); } 01008 }; 01009 01010 template<class ContainerAllocator> 01011 struct DataType<rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > { 01012 static const char* value() 01013 { 01014 return "rgbd_assembler/RgbdAssembly"; 01015 } 01016 01017 static const char* value(const rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); } 01018 }; 01019 01020 } // namespace service_traits 01021 } // namespace ros 01022 01023 #endif // RGBD_ASSEMBLER_SERVICE_RGBDASSEMBLY_H 01024