Parameters.h
Go to the documentation of this file.
1 /*
2 Copyright (c) 2010-2016, Mathieu Labbe - IntRoLab - Universite de Sherbrooke
3 All rights reserved.
4 
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions are met:
7  * Redistributions of source code must retain the above copyright
8  notice, this list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright
10  notice, this list of conditions and the following disclaimer in the
11  documentation and/or other materials provided with the distribution.
12  * Neither the name of the Universite de Sherbrooke nor the
13  names of its contributors may be used to endorse or promote products
14  derived from this software without specific prior written permission.
15 
16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
20 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27 
28 #ifndef PARAMETERS_H_
29 #define PARAMETERS_H_
30 
31 // default parameters
32 #include "rtabmap/core/RtabmapExp.h" // DLL export/import defines
33 #include "rtabmap/core/Version.h" // DLL export/import defines
35 #include <opencv2/core/version.hpp>
36 #include <opencv2/opencv_modules.hpp>
37 #include <string>
38 #include <map>
39 
40 namespace rtabmap
41 {
42 
43 typedef std::map<std::string, std::string> ParametersMap; // Key, value
44 typedef std::pair<std::string, std::string> ParametersPair;
45 
64 #define RTABMAP_PARAM(PREFIX, NAME, TYPE, DEFAULT_VALUE, DESCRIPTION) \
65  public: \
66  static std::string k##PREFIX##NAME() {return std::string(#PREFIX "/" #NAME);} \
67  static TYPE default##PREFIX##NAME() {return (TYPE)DEFAULT_VALUE;} \
68  static std::string type##PREFIX##NAME() {return std::string(#TYPE);} \
69  private: \
70  class Dummy##PREFIX##NAME { \
71  public: \
72  Dummy##PREFIX##NAME() {parameters_.insert(ParametersPair(#PREFIX "/" #NAME, #DEFAULT_VALUE)); \
73  parametersType_.insert(ParametersPair(#PREFIX "/" #NAME, #TYPE)); \
74  descriptions_.insert(ParametersPair(#PREFIX "/" #NAME, DESCRIPTION));} \
75  }; \
76  Dummy##PREFIX##NAME dummy##PREFIX##NAME
77 // end define PARAM
78 
98 #define RTABMAP_PARAM_STR(PREFIX, NAME, DEFAULT_VALUE, DESCRIPTION) \
99  public: \
100  static std::string k##PREFIX##NAME() {return std::string(#PREFIX "/" #NAME);} \
101  static std::string default##PREFIX##NAME() {return DEFAULT_VALUE;} \
102  static std::string type##PREFIX##NAME() {return std::string("string");} \
103  private: \
104  class Dummy##PREFIX##NAME { \
105  public: \
106  Dummy##PREFIX##NAME() {parameters_.insert(ParametersPair(#PREFIX "/" #NAME, DEFAULT_VALUE)); \
107  parametersType_.insert(ParametersPair(#PREFIX "/" #NAME, "string")); \
108  descriptions_.insert(ParametersPair(#PREFIX "/" #NAME, DESCRIPTION));} \
109  }; \
110  Dummy##PREFIX##NAME dummy##PREFIX##NAME
111 // end define PARAM
112 
131 #define RTABMAP_PARAM_COND(PREFIX, NAME, TYPE, COND, DEFAULT_VALUE1, DEFAULT_VALUE2, DESCRIPTION) \
132  public: \
133  static std::string k##PREFIX##NAME() {return std::string(#PREFIX "/" #NAME);} \
134  static TYPE default##PREFIX##NAME() {return COND?DEFAULT_VALUE1:DEFAULT_VALUE2;} \
135  static std::string type##PREFIX##NAME() {return std::string(#TYPE);} \
136  private: \
137  class Dummy##PREFIX##NAME { \
138  public: \
139  Dummy##PREFIX##NAME() {parameters_.insert(ParametersPair(#PREFIX "/" #NAME, COND?#DEFAULT_VALUE1:#DEFAULT_VALUE2)); \
140  parametersType_.insert(ParametersPair(#PREFIX "/" #NAME, #TYPE)); \
141  descriptions_.insert(ParametersPair(#PREFIX "/" #NAME, DESCRIPTION));} \
142  }; \
143  Dummy##PREFIX##NAME dummy##PREFIX##NAME
144 // end define PARAM
145 
171 {
172  // Rtabmap parameters
173  RTABMAP_PARAM(Rtabmap, PublishStats, bool, true, "Publishing statistics.");
174  RTABMAP_PARAM(Rtabmap, PublishLastSignature, bool, true, "Publishing last signature.");
175  RTABMAP_PARAM(Rtabmap, PublishPdf, bool, true, "Publishing pdf.");
176  RTABMAP_PARAM(Rtabmap, PublishLikelihood, bool, true, "Publishing likelihood.");
177  RTABMAP_PARAM(Rtabmap, PublishRAMUsage, bool, false, "Publishing RAM usage in statistics (may add a small overhead to get info from the system).");
178  RTABMAP_PARAM(Rtabmap, ComputeRMSE, bool, true, "Compute root mean square error (RMSE) and publish it in statistics, if ground truth is provided.");
179  RTABMAP_PARAM(Rtabmap, SaveWMState, bool, false, "Save working memory state after each update in statistics.");
180  RTABMAP_PARAM(Rtabmap, TimeThr, float, 0, "Maximum time allowed for map update (ms) (0 means infinity). When map update time exceeds this fixed time threshold, some nodes in Working Memory (WM) are transferred to Long-Term Memory to limit the size of the WM and decrease the update time.");
181  RTABMAP_PARAM(Rtabmap, MemoryThr, int, 0, uFormat("Maximum nodes in the Working Memory (0 means infinity). Similar to \"%s\", when the number of nodes in Working Memory (WM) exceeds this treshold, some nodes are transferred to Long-Term Memory to keep WM size fixed.", kRtabmapTimeThr().c_str()));
182  RTABMAP_PARAM(Rtabmap, DetectionRate, float, 1, "Detection rate (Hz). RTAB-Map will filter input images to satisfy this rate.");
183  RTABMAP_PARAM(Rtabmap, ImageBufferSize, unsigned int, 1, "Data buffer size (0 min inf).");
184  RTABMAP_PARAM(Rtabmap, CreateIntermediateNodes, bool, false, uFormat("Create intermediate nodes between loop closure detection. Only used when %s>0.", kRtabmapDetectionRate().c_str()));
185  RTABMAP_PARAM_STR(Rtabmap, WorkingDirectory, "", "Working directory.");
186  RTABMAP_PARAM(Rtabmap, MaxRetrieved, unsigned int, 2, "Maximum nodes retrieved at the same time from LTM.");
187  RTABMAP_PARAM(Rtabmap, MaxRepublished, unsigned int, 2, uFormat("Maximum nodes republished when requesting missing data. When %s=false, only loop closure data is republished, otherwise the closest nodes from the current localization are republished first. Ignored if %s=false.", kRGBDEnabled().c_str(), kRtabmapPublishLastSignature().c_str()));
188  RTABMAP_PARAM(Rtabmap, StatisticLogsBufferedInRAM, bool, true, "Statistic logs buffered in RAM instead of written to hard drive after each iteration.");
189  RTABMAP_PARAM(Rtabmap, StatisticLogged, bool, false, "Logging enabled.");
190  RTABMAP_PARAM(Rtabmap, StatisticLoggedHeaders, bool, true, "Add column header description to log files.");
191  RTABMAP_PARAM(Rtabmap, StartNewMapOnLoopClosure, bool, false, "Start a new map only if there is a global loop closure with a previous map.");
192  RTABMAP_PARAM(Rtabmap, StartNewMapOnGoodSignature, bool, false, uFormat("Start a new map only if the first signature is not bad (i.e., has enough features, see %s).", kKpBadSignRatio().c_str()));
193  RTABMAP_PARAM(Rtabmap, ImagesAlreadyRectified, bool, true, "Images are already rectified. By default RTAB-Map assumes that received images are rectified. If they are not, they can be rectified by RTAB-Map if this parameter is false.");
194  RTABMAP_PARAM(Rtabmap, RectifyOnlyFeatures, bool, false, uFormat("If \"%s\" is false and this parameter is true, the whole RGB image will not be rectified, only the features. Warning: As projection of RGB-D image to point cloud is assuming that images are rectified, the generated point cloud map will have wrong colors if this parameter is true.", kRtabmapImagesAlreadyRectified().c_str()));
195 
196  // Hypotheses selection
197  RTABMAP_PARAM(Rtabmap, LoopThr, float, 0.11, "Loop closing threshold.");
198  RTABMAP_PARAM(Rtabmap, LoopRatio, float, 0, "The loop closure hypothesis must be over LoopRatio x lastHypothesisValue.");
199  RTABMAP_PARAM(Rtabmap, LoopGPS, bool, true, uFormat("Use GPS to filter likelihood (if GPS is recorded). Only locations inside the local radius \"%s\" of the current GPS location are considered for loop closure detection.", kRGBDLocalRadius().c_str()));
200 
201  // Memory
202  RTABMAP_PARAM(Mem, RehearsalSimilarity, float, 0.6, "Rehearsal similarity.");
203  RTABMAP_PARAM(Mem, ImageKept, bool, false, "Keep raw images in RAM.");
204  RTABMAP_PARAM(Mem, BinDataKept, bool, true, "Keep binary data in db.");
205  RTABMAP_PARAM(Mem, RawDescriptorsKept, bool, true, "Raw descriptors kept in memory.");
206  RTABMAP_PARAM(Mem, MapLabelsAdded, bool, true, "Create map labels. The first node of a map will be labeled as \"map#\" where # is the map ID.");
207  RTABMAP_PARAM(Mem, SaveDepth16Format, bool, false, "Save depth image into 16 bits format to reduce memory used. Warning: values over ~65 meters are ignored (maximum 65535 millimeters).");
208  RTABMAP_PARAM(Mem, NotLinkedNodesKept, bool, true, "Keep not linked nodes in db (rehearsed nodes and deleted nodes).");
209  RTABMAP_PARAM(Mem, IntermediateNodeDataKept, bool, false, "Keep intermediate node data in db.");
210  RTABMAP_PARAM_STR(Mem, ImageCompressionFormat, ".jpg", "RGB image compression format. It should be \".jpg\" or \".png\".");
211  RTABMAP_PARAM(Mem, STMSize, unsigned int, 10, "Short-term memory size.");
212  RTABMAP_PARAM(Mem, IncrementalMemory, bool, true, "SLAM mode, otherwise it is Localization mode.");
213  RTABMAP_PARAM(Mem, LocalizationDataSaved, bool, false, uFormat("Save localization data during localization session (when %s=false). When enabled, the database will then also grow in localization mode. This mode would be used only for debugging purpose.", kMemIncrementalMemory().c_str()).c_str());
214  RTABMAP_PARAM(Mem, ReduceGraph, bool, false, "Reduce graph. Merge nodes when loop closures are added (ignoring those with user data set).");
215  RTABMAP_PARAM(Mem, RecentWmRatio, float, 0.2, "Ratio of locations after the last loop closure in WM that cannot be transferred.");
216  RTABMAP_PARAM(Mem, TransferSortingByWeightId, bool, false, "On transfer, signatures are sorted by weight->ID only (i.e. the oldest of the lowest weighted signatures are transferred first). If false, the signatures are sorted by weight->Age->ID (i.e. the oldest inserted in WM of the lowest weighted signatures are transferred first). Note that retrieval updates the age, not the ID.");
217  RTABMAP_PARAM(Mem, RehearsalIdUpdatedToNewOne, bool, false, "On merge, update to new id. When false, no copy.");
218  RTABMAP_PARAM(Mem, RehearsalWeightIgnoredWhileMoving, bool, false, "When the robot is moving, weights are not updated on rehearsal.");
219  RTABMAP_PARAM(Mem, GenerateIds, bool, true, "True=Generate location IDs, False=use input image IDs.");
220  RTABMAP_PARAM(Mem, BadSignaturesIgnored, bool, false, "Bad signatures are ignored.");
221  RTABMAP_PARAM(Mem, InitWMWithAllNodes, bool, false, "Initialize the Working Memory with all nodes in Long-Term Memory. When false, it is initialized with nodes of the previous session.");
222  RTABMAP_PARAM(Mem, DepthAsMask, bool, true, "Use depth image as mask when extracting features for vocabulary.");
223  RTABMAP_PARAM(Mem, StereoFromMotion, bool, false, uFormat("Triangulate features without depth using stereo from motion (odometry). It would be ignored if %s is true and the feature detector used supports masking.", kMemDepthAsMask().c_str()));
224  RTABMAP_PARAM(Mem, ImagePreDecimation, unsigned int, 1, uFormat("Decimation of the RGB image before visual feature detection. If depth size is larger than decimated RGB size, depth is decimated to be always at most equal to RGB size. If %s is true and if depth is smaller than decimated RGB, depth may be interpolated to match RGB size for feature detection.",kMemDepthAsMask().c_str()));
225  RTABMAP_PARAM(Mem, ImagePostDecimation, unsigned int, 1, uFormat("Decimation of the RGB image before saving it to database. If depth size is larger than decimated RGB size, depth is decimated to be always at most equal to RGB size. Decimation is done from the original image. If set to same value than %s, data already decimated is saved (no need to re-decimate the image).", kMemImagePreDecimation().c_str()));
226  RTABMAP_PARAM(Mem, CompressionParallelized, bool, true, "Compression of sensor data is multi-threaded.");
227  RTABMAP_PARAM(Mem, LaserScanDownsampleStepSize, int, 1, "If > 1, downsample the laser scans when creating a signature.");
228  RTABMAP_PARAM(Mem, LaserScanVoxelSize, float, 0.0, uFormat("If > 0 m, voxel filtering is done on laser scans when creating a signature. If the laser scan had normals, they will be removed. To recompute the normals, make sure to use \"%s\" or \"%s\" parameters.", kMemLaserScanNormalK().c_str(), kMemLaserScanNormalRadius().c_str()));
229  RTABMAP_PARAM(Mem, LaserScanNormalK, int, 0, "If > 0 and laser scans don't have normals, normals will be computed with K search neighbors when creating a signature.");
230  RTABMAP_PARAM(Mem, LaserScanNormalRadius, float, 0.0, "If > 0 m and laser scans don't have normals, normals will be computed with radius search neighbors when creating a signature.");
231  RTABMAP_PARAM(Mem, UseOdomFeatures, bool, true, "Use odometry features instead of regenerating them.");
232  RTABMAP_PARAM(Mem, UseOdomGravity, bool, false, uFormat("Use odometry instead of IMU orientation to add gravity links to new nodes created. We assume that odometry is already aligned with gravity (e.g., we are using a VIO approach). Gravity constraints are used by graph optimization only if \"%s\" is not zero.", kOptimizerGravitySigma().c_str()));
233  RTABMAP_PARAM(Mem, CovOffDiagIgnored, bool, true, "Ignore off diagonal values of the covariance matrix.");
234 
235  // KeypointMemory (Keypoint-based)
236  RTABMAP_PARAM(Kp, NNStrategy, int, 1, "kNNFlannNaive=0, kNNFlannKdTree=1, kNNFlannLSH=2, kNNBruteForce=3, kNNBruteForceGPU=4");
237  RTABMAP_PARAM(Kp, IncrementalDictionary, bool, true, "");
238  RTABMAP_PARAM(Kp, IncrementalFlann, bool, true, uFormat("When using FLANN based strategy, add/remove points to its index without always rebuilding the index (the index is built only when the dictionary increases of the factor \"%s\" in size).", kKpFlannRebalancingFactor().c_str()));
239  RTABMAP_PARAM(Kp, FlannRebalancingFactor, float, 2.0, uFormat("Factor used when rebuilding the incremental FLANN index (see \"%s\"). Set <=1 to disable.", kKpIncrementalFlann().c_str()));
240  RTABMAP_PARAM(Kp, ByteToFloat, bool, false, uFormat("For %s=1, binary descriptors are converted to float by converting each byte to float instead of converting each bit to float. When converting bytes instead of bits, less memory is used and search is faster at the cost of slightly less accurate matching.", kKpNNStrategy().c_str()));
241  RTABMAP_PARAM(Kp, MaxDepth, float, 0, "Filter extracted keypoints by depth (0=inf).");
242  RTABMAP_PARAM(Kp, MinDepth, float, 0, "Filter extracted keypoints by depth.");
243  RTABMAP_PARAM(Kp, MaxFeatures, int, 500, "Maximum features extracted from the images (0 means not bounded, <0 means no extraction).");
244  RTABMAP_PARAM(Kp, BadSignRatio, float, 0.5, "Bad signature ratio (less than Ratio x AverageWordsPerImage = bad).");
245  RTABMAP_PARAM(Kp, NndrRatio, float, 0.8, "NNDR ratio (A matching pair is detected, if its distance is closer than X times the distance of the second nearest neighbor.)");
246 #if CV_MAJOR_VERSION > 2 && !defined(HAVE_OPENCV_XFEATURES2D)
247  // OpenCV>2 without xFeatures2D module doesn't have BRIEF
248  RTABMAP_PARAM(Kp, DetectorStrategy, int, 8, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY 15=PyDetector");
249 #else
250  RTABMAP_PARAM(Kp, DetectorStrategy, int, 6, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY 15=PyDetector");
251 #endif
252  RTABMAP_PARAM(Kp, TfIdfLikelihoodUsed, bool, true, "Use of the td-idf strategy to compute the likelihood.");
253  RTABMAP_PARAM(Kp, Parallelized, bool, true, "If the dictionary update and signature creation were parallelized.");
254  RTABMAP_PARAM_STR(Kp, RoiRatios, "0.0 0.0 0.0 0.0", "Region of interest ratios [left, right, top, bottom].");
255  RTABMAP_PARAM_STR(Kp, DictionaryPath, "", "Path of the pre-computed dictionary");
256  RTABMAP_PARAM(Kp, NewWordsComparedTogether, bool, true, "When adding new words to dictionary, they are compared also with each other (to detect same words in the same signature).");
257  RTABMAP_PARAM(Kp, SubPixWinSize, int, 3, "See cv::cornerSubPix().");
258  RTABMAP_PARAM(Kp, SubPixIterations, int, 0, "See cv::cornerSubPix(). 0 disables sub pixel refining.");
259  RTABMAP_PARAM(Kp, SubPixEps, double, 0.02, "See cv::cornerSubPix().");
260  RTABMAP_PARAM(Kp, GridRows, int, 1, uFormat("Number of rows of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kKpMaxFeatures().c_str()));
261  RTABMAP_PARAM(Kp, GridCols, int, 1, uFormat("Number of columns of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kKpMaxFeatures().c_str()));
262 
263  //Database
264  RTABMAP_PARAM(DbSqlite3, InMemory, bool, false, "Using database in the memory instead of a file on the hard disk.");
265  RTABMAP_PARAM(DbSqlite3, CacheSize, unsigned int, 10000, "Sqlite cache size (default is 2000).");
266  RTABMAP_PARAM(DbSqlite3, JournalMode, int, 3, "0=DELETE, 1=TRUNCATE, 2=PERSIST, 3=MEMORY, 4=OFF (see sqlite3 doc : \"PRAGMA journal_mode\")");
267  RTABMAP_PARAM(DbSqlite3, Synchronous, int, 0, "0=OFF, 1=NORMAL, 2=FULL (see sqlite3 doc : \"PRAGMA synchronous\")");
268  RTABMAP_PARAM(DbSqlite3, TempStore, int, 2, "0=DEFAULT, 1=FILE, 2=MEMORY (see sqlite3 doc : \"PRAGMA temp_store\")");
269  RTABMAP_PARAM_STR(Db, TargetVersion, "", "Target database version for backward compatibility purpose. Only Major and minor versions are used and should be set (e.g., 0.19 vs 0.20 or 1.0 vs 2.0). Patch version is ignored (e.g., 0.20.1 and 0.20.3 will generate a 0.20 database).");
270 
271  // Keypoints descriptors/detectors
272  RTABMAP_PARAM(SURF, Extended, bool, false, "Extended descriptor flag (true - use extended 128-element descriptors; false - use 64-element descriptors).");
273  RTABMAP_PARAM(SURF, HessianThreshold, float, 500, "Threshold for hessian keypoint detector used in SURF.");
274  RTABMAP_PARAM(SURF, Octaves, int, 4, "Number of pyramid octaves the keypoint detector will use.");
275  RTABMAP_PARAM(SURF, OctaveLayers, int, 2, "Number of octave layers within each octave.");
276  RTABMAP_PARAM(SURF, Upright, bool, false, "Up-right or rotated features flag (true - do not compute orientation of features; false - compute orientation).");
277  RTABMAP_PARAM(SURF, GpuVersion, bool, false, "GPU-SURF: Use GPU version of SURF. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.");
278  RTABMAP_PARAM(SURF, GpuKeypointsRatio, float, 0.01, "Used with SURF GPU.");
279 
280  RTABMAP_PARAM(SIFT, NFeatures, int, 0, "The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast).");
281  RTABMAP_PARAM(SIFT, NOctaveLayers, int, 3, "The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.");
282  RTABMAP_PARAM(SIFT, ContrastThreshold, double, 0.04, "The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.");
283  RTABMAP_PARAM(SIFT, EdgeThreshold, double, 10, "The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).");
284  RTABMAP_PARAM(SIFT, Sigma, double, 1.6, "The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.");
285  RTABMAP_PARAM(SIFT, RootSIFT, bool, false, "Apply RootSIFT normalization of the descriptors.");
286 
287  RTABMAP_PARAM(BRIEF, Bytes, int, 32, "Bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.");
288 
289  RTABMAP_PARAM(FAST, Threshold, int, 20, "Threshold on difference between intensity of the central pixel and pixels of a circle around this pixel.");
290  RTABMAP_PARAM(FAST, NonmaxSuppression, bool, true, "If true, non-maximum suppression is applied to detected corners (keypoints).");
291  RTABMAP_PARAM(FAST, Gpu, bool, false, "GPU-FAST: Use GPU version of FAST. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.");
292  RTABMAP_PARAM(FAST, GpuKeypointsRatio, double, 0.05, "Used with FAST GPU.");
293  RTABMAP_PARAM(FAST, MinThreshold, int, 7, "Minimum threshold. Used only when FAST/GridRows and FAST/GridCols are set.");
294  RTABMAP_PARAM(FAST, MaxThreshold, int, 200, "Maximum threshold. Used only when FAST/GridRows and FAST/GridCols are set.");
295  RTABMAP_PARAM(FAST, GridRows, int, 0, "Grid rows (0 to disable). Adapts the detector to partition the source image into a grid and detect points in each cell.");
296  RTABMAP_PARAM(FAST, GridCols, int, 0, "Grid cols (0 to disable). Adapts the detector to partition the source image into a grid and detect points in each cell.");
297  RTABMAP_PARAM(FAST, CV, int, 0, "Enable FastCV implementation if non-zero (and RTAB-Map is built with FastCV support). Values should be 9 and 10.");
298 
299  RTABMAP_PARAM(GFTT, QualityLevel, double, 0.001, "");
300  RTABMAP_PARAM(GFTT, MinDistance, double, 7, "");
301  RTABMAP_PARAM(GFTT, BlockSize, int, 3, "");
302  RTABMAP_PARAM(GFTT, UseHarrisDetector, bool, false, "");
303  RTABMAP_PARAM(GFTT, K, double, 0.04, "");
304 
305  RTABMAP_PARAM(ORB, ScaleFactor, float, 2, "Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer.");
306  RTABMAP_PARAM(ORB, NLevels, int, 3, "The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels).");
307  RTABMAP_PARAM(ORB, EdgeThreshold, int, 19, "This is size of the border where the features are not detected. It should roughly match the patchSize parameter.");
308  RTABMAP_PARAM(ORB, FirstLevel, int, 0, "It should be 0 in the current implementation.");
309  RTABMAP_PARAM(ORB, WTA_K, int, 2, "The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).");
310  RTABMAP_PARAM(ORB, ScoreType, int, 0, "The default HARRIS_SCORE=0 means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE=1 is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute.");
311  RTABMAP_PARAM(ORB, PatchSize, int, 31, "size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger.");
312  RTABMAP_PARAM(ORB, Gpu, bool, false, "GPU-ORB: Use GPU version of ORB. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.");
313 
314  RTABMAP_PARAM(FREAK, OrientationNormalized, bool, true, "Enable orientation normalization.");
315  RTABMAP_PARAM(FREAK, ScaleNormalized, bool, true, "Enable scale normalization.");
316  RTABMAP_PARAM(FREAK, PatternScale, float, 22, "Scaling of the description pattern.");
317  RTABMAP_PARAM(FREAK, NOctaves, int, 4, "Number of octaves covered by the detected keypoints.");
318 
319  RTABMAP_PARAM(BRISK, Thresh, int, 30, "FAST/AGAST detection threshold score.");
320  RTABMAP_PARAM(BRISK, Octaves, int, 3, "Detection octaves. Use 0 to do single scale.");
321  RTABMAP_PARAM(BRISK, PatternScale, float, 1,"Apply this scale to the pattern used for sampling the neighbourhood of a keypoint.");
322 
323  RTABMAP_PARAM(KAZE, Extended, bool, false, "Set to enable extraction of extended (128-byte) descriptor.");
324  RTABMAP_PARAM(KAZE, Upright, bool, false, "Set to enable use of upright descriptors (non rotation-invariant).");
325  RTABMAP_PARAM(KAZE, Threshold, float, 0.001, "Detector response threshold to accept keypoint.");
326  RTABMAP_PARAM(KAZE, NOctaves, int, 4, "Maximum octave evolution of the image.");
327  RTABMAP_PARAM(KAZE, NOctaveLayers, int, 4, "Default number of sublevels per scale level.");
328  RTABMAP_PARAM(KAZE, Diffusivity, int, 1, "Diffusivity type: 0=DIFF_PM_G1, 1=DIFF_PM_G2, 2=DIFF_WEICKERT or 3=DIFF_CHARBONNIER.");
329 
330  RTABMAP_PARAM_STR(SuperPoint, ModelPath, "", "[Required] Path to pre-trained weights Torch file of SuperPoint (*.pt).");
331  RTABMAP_PARAM(SuperPoint, Threshold, float, 0.010, "Detector response threshold to accept keypoint.");
332  RTABMAP_PARAM(SuperPoint, NMS, bool, true, "If true, non-maximum suppression is applied to detected keypoints.");
333  RTABMAP_PARAM(SuperPoint, NMSRadius, int, 4, uFormat("[%s=true] Minimum distance (pixels) between keypoints.", kSuperPointNMS().c_str()));
334  RTABMAP_PARAM(SuperPoint, Cuda, bool, true, "Use Cuda device for Torch, otherwise CPU device is used by default.");
335 
336  RTABMAP_PARAM_STR(PyDetector, Path, "", "Path to python script file (see available ones in rtabmap/corelib/src/python/*). See the header to see where the script should be copied.");
337  RTABMAP_PARAM(PyDetector, Cuda, bool, true, "Use cuda.");
338 
339  // BayesFilter
340  RTABMAP_PARAM(Bayes, VirtualPlacePriorThr, float, 0.9, "Virtual place prior");
341  RTABMAP_PARAM_STR(Bayes, PredictionLC, "0.1 0.36 0.30 0.16 0.062 0.0151 0.00255 0.000324 2.5e-05 1.3e-06 4.8e-08 1.2e-09 1.9e-11 2.2e-13 1.7e-15 8.5e-18 2.9e-20 6.9e-23", "Prediction of loop closures (Gaussian-like, here with sigma=1.6) - Format: {VirtualPlaceProb, LoopClosureProb, NeighborLvl1, NeighborLvl2, ...}.");
342  RTABMAP_PARAM(Bayes, FullPredictionUpdate, bool, false, "Regenerate all the prediction matrix on each iteration (otherwise only removed/added ids are updated).");
343 
344  // Verify hypotheses
345  RTABMAP_PARAM(VhEp, Enabled, bool, false, uFormat("Verify visual loop closure hypothesis by computing a fundamental matrix. This is done prior to transformation computation when %s is enabled.", kRGBDEnabled().c_str()));
346  RTABMAP_PARAM(VhEp, MatchCountMin, int, 8, "Minimum of matching visual words pairs to accept the loop hypothesis.");
347  RTABMAP_PARAM(VhEp, RansacParam1, float, 3, "Fundamental matrix (see cvFindFundamentalMat()): Max distance (in pixels) from the epipolar line for a point to be inlier.");
348  RTABMAP_PARAM(VhEp, RansacParam2, float, 0.99, "Fundamental matrix (see cvFindFundamentalMat()): Performance of RANSAC.");
349 
350  // RGB-D SLAM
351  RTABMAP_PARAM(RGBD, Enabled, bool, true, "Activate metric SLAM. If set to false, classic RTAB-Map loop closure detection is done using only images and without any metric information.");
352  RTABMAP_PARAM(RGBD, LinearUpdate, float, 0.1, "Minimum linear displacement (m) to update the map. Rehearsal is done prior to this, so weights are still updated.");
353  RTABMAP_PARAM(RGBD, AngularUpdate, float, 0.1, "Minimum angular displacement (rad) to update the map. Rehearsal is done prior to this, so weights are still updated.");
354  RTABMAP_PARAM(RGBD, LinearSpeedUpdate, float, 0.0, "Maximum linear speed (m/s) to update the map (0 means not limit).");
355  RTABMAP_PARAM(RGBD, AngularSpeedUpdate, float, 0.0, "Maximum angular speed (rad/s) to update the map (0 means not limit).");
356  RTABMAP_PARAM(RGBD, NewMapOdomChangeDistance, float, 0, "A new map is created if a change of odometry translation greater than X m is detected (0 m = disabled).");
357  RTABMAP_PARAM(RGBD, OptimizeFromGraphEnd, bool, false, "Optimize graph from the newest node. If false, the graph is optimized from the oldest node of the current graph (this adds an overhead computation to detect to oldest node of the current graph, but it can be useful to preserve the map referential from the oldest node). Warning when set to false: when some nodes are transferred, the first referential of the local map may change, resulting in momentary changes in robot/map position (which are annoying in teleoperation).");
358  RTABMAP_PARAM(RGBD, OptimizeMaxError, float, 3.0, uFormat("Reject loop closures if optimization error ratio is greater than this value (0=disabled). Ratio is computed as absolute error over standard deviation of each link. This will help to detect when a wrong loop closure is added to the graph. Not compatible with \"%s\" if enabled.", kOptimizerRobust().c_str()));
359  RTABMAP_PARAM(RGBD, MaxLoopClosureDistance, float, 0.0, "Reject loop closures/localizations if the distance from the map is over this distance (0=disabled).");
360  RTABMAP_PARAM(RGBD, StartAtOrigin, bool, false, uFormat("If true, rtabmap will assume the robot is starting from origin of the map. If false, rtabmap will assume the robot is restarting from the last saved localization pose from previous session (the place where it shut down previously). Used only in localization mode (%s=false).", kMemIncrementalMemory().c_str()));
361  RTABMAP_PARAM(RGBD, GoalReachedRadius, float, 0.5, "Goal reached radius (m).");
362  RTABMAP_PARAM(RGBD, PlanStuckIterations, int, 0, "Mark the current goal node on the path as unreachable if it is not updated after X iterations (0=disabled). If all upcoming nodes on the path are unreachabled, the plan fails.");
363  RTABMAP_PARAM(RGBD, PlanLinearVelocity, float, 0, "Linear velocity (m/sec) used to compute path weights.");
364  RTABMAP_PARAM(RGBD, PlanAngularVelocity, float, 0, "Angular velocity (rad/sec) used to compute path weights.");
365  RTABMAP_PARAM(RGBD, GoalsSavedInUserData, bool, false, "When a goal is received and processed with success, it is saved in user data of the location with this format: \"GOAL:#\".");
366  RTABMAP_PARAM(RGBD, MaxLocalRetrieved, unsigned int, 2, "Maximum local locations retrieved (0=disabled) near the current pose in the local map or on the current planned path (those on the planned path have priority).");
367  RTABMAP_PARAM(RGBD, LocalRadius, float, 10, "Local radius (m) for nodes selection in the local map. This parameter is used in some approaches about the local map management.");
368  RTABMAP_PARAM(RGBD, LocalImmunizationRatio, float, 0.25, "Ratio of working memory for which local nodes are immunized from transfer.");
369  RTABMAP_PARAM(RGBD, ScanMatchingIdsSavedInLinks, bool, true, "Save scan matching IDs from one-to-many proximity detection in link's user data.");
370  RTABMAP_PARAM(RGBD, NeighborLinkRefining, bool, false, uFormat("When a new node is added to the graph, the transformation of its neighbor link to the previous node is refined using registration approach selected (%s).", kRegStrategy().c_str()));
371  RTABMAP_PARAM(RGBD, LoopClosureIdentityGuess, bool, false, uFormat("Use Identity matrix as guess when computing loop closure transform, otherwise no guess is used, thus assuming that registration strategy selected (%s) can deal with transformation estimation without guess.", kRegStrategy().c_str()));
372  RTABMAP_PARAM(RGBD, LoopClosureReextractFeatures, bool, false, "Extract features even if there are some already in the nodes. Raw features are not saved in database.");
373  RTABMAP_PARAM(RGBD, LocalBundleOnLoopClosure, bool, false, "Do local bundle adjustment with neighborhood of the loop closure.");
374  RTABMAP_PARAM(RGBD, InvertedReg, bool, false, "On loop closure, do registration from the target to reference instead of reference to target.");
375  RTABMAP_PARAM(RGBD, CreateOccupancyGrid, bool, false, "Create local occupancy grid maps. See \"Grid\" group for parameters.");
376  RTABMAP_PARAM(RGBD, MarkerDetection, bool, false, "Detect static markers to be added as landmarks for graph optimization. If input data have already landmarks, this will be ignored. See \"Marker\" group for parameters.");
377  RTABMAP_PARAM(RGBD, LoopCovLimited, bool, false, "Limit covariance of non-neighbor links to minimum covariance of neighbor links. In other words, if covariance of a loop closure link is smaller than the minimum covariance of odometry links, its covariance is set to minimum covariance of odometry links.");
378  RTABMAP_PARAM(RGBD, MaxOdomCacheSize, int, 10, uFormat("Maximum odometry cache size. Used only in localization mode (when %s=false). This is used to get smoother localizations and to verify localization transforms (when %s!=0) to make sure we don't teleport to a location very similar to one we previously localized on. Set 0 to disable caching.", kMemIncrementalMemory().c_str(), kRGBDOptimizeMaxError().c_str()));
379 
380  // Local/Proximity loop closure detection
381  RTABMAP_PARAM(RGBD, ProximityByTime, bool, false, "Detection over all locations in STM.");
382  RTABMAP_PARAM(RGBD, ProximityBySpace, bool, true, "Detection over locations (in Working Memory) near in space.");
383  RTABMAP_PARAM(RGBD, ProximityMaxGraphDepth, int, 50, "Maximum depth from the current/last loop closure location and the local loop closure hypotheses. Set 0 to ignore.");
384  RTABMAP_PARAM(RGBD, ProximityMaxPaths, int, 3, "Maximum paths compared (from the most recent) for proximity detection. 0 means no limit.");
385  RTABMAP_PARAM(RGBD, ProximityPathFilteringRadius, float, 1, "Path filtering radius to reduce the number of nodes to compare in a path in one-to-many proximity detection. The nearest node in a path should be inside that radius to be considered for one-to-one proximity detection.");
386  RTABMAP_PARAM(RGBD, ProximityPathMaxNeighbors, int, 0, "Maximum neighbor nodes compared on each path for one-to-many proximity detection. Set to 0 to disable one-to-many proximity detection (by merging the laser scans).");
387  RTABMAP_PARAM(RGBD, ProximityPathRawPosesUsed, bool, true, "When comparing to a local path for one-to-many proximity detection, merge the scans using the odometry poses (with neighbor link optimizations) instead of the ones in the optimized local graph.");
388  RTABMAP_PARAM(RGBD, ProximityAngle, float, 45, "Maximum angle (degrees) for one-to-one proximity detection.");
389  RTABMAP_PARAM(RGBD, ProximityOdomGuess, bool, false, "Use odometry as motion guess for one-to-one proximity detection.");
390  RTABMAP_PARAM(RGBD, ProximityGlobalScanMap, bool, false, uFormat("Create a global assembled map from laser scans for one-to-many proximity detection, replacing the original one-to-many proximity detection (i.e., detection against local paths). Only used in localization mode (%s=false), otherwise original one-to-many proximity detection is done. Note also that if graph is modified (i.e., memory management is enabled or robot jumps from one disjoint session to another in same database), the global scan map is cleared and one-to-many proximity detection is reverted to original approach.", kMemIncrementalMemory().c_str()));
391  RTABMAP_PARAM(RGBD, ProximityMergedScanCovFactor, double, 100.0, uFormat("Covariance factor for one-to-many proximity detection (when %s>0 and scans are used).", kRGBDProximityPathMaxNeighbors().c_str()));
392 
393  // Graph optimization
394 #ifdef RTABMAP_GTSAM
395  RTABMAP_PARAM(Optimizer, Strategy, int, 2, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
396  RTABMAP_PARAM(Optimizer, Iterations, int, 20, "Optimization iterations.");
397  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.00001, "Stop optimizing when the error improvement is less than this value.");
398 #else
399 #ifdef RTABMAP_G2O
400  RTABMAP_PARAM(Optimizer, Strategy, int, 1, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
401  RTABMAP_PARAM(Optimizer, Iterations, int, 20, "Optimization iterations.");
402  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.0, "Stop optimizing when the error improvement is less than this value.");
403 #else
404 #ifdef RTABMAP_CERES
405  RTABMAP_PARAM(Optimizer, Strategy, int, 3, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
406  RTABMAP_PARAM(Optimizer, Iterations, int, 20, "Optimization iterations.");
407  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.000001, "Stop optimizing when the error improvement is less than this value.");
408 #else
409  RTABMAP_PARAM(Optimizer, Strategy, int, 0, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
410  RTABMAP_PARAM(Optimizer, Iterations, int, 100, "Optimization iterations.");
411  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.00001, "Stop optimizing when the error improvement is less than this value.");
412 #endif
413 #endif
414 #endif
415  RTABMAP_PARAM(Optimizer, VarianceIgnored, bool, false, "Ignore constraints' variance. If checked, identity information matrix is used for each constraint. Otherwise, an information matrix is generated from the variance saved in the links.");
416  RTABMAP_PARAM(Optimizer, Robust, bool, false, uFormat("Robust graph optimization using Vertigo (only work for g2o and GTSAM optimization strategies). Not compatible with \"%s\" if enabled.", kRGBDOptimizeMaxError().c_str()));
417  RTABMAP_PARAM(Optimizer, PriorsIgnored, bool, true, "Ignore prior constraints (global pose or GPS) while optimizing. Currently only g2o and gtsam optimization supports this.");
418  RTABMAP_PARAM(Optimizer, LandmarksIgnored, bool, false, "Ignore landmark constraints while optimizing. Currently only g2o and gtsam optimization supports this.");
419 #if defined(RTABMAP_G2O) || defined(RTABMAP_GTSAM)
420  RTABMAP_PARAM(Optimizer, GravitySigma, float, 0.3, uFormat("Gravity sigma value (>=0, typically between 0.1 and 0.3). Optimization is done while preserving gravity orientation of the poses. This should be used only with visual/lidar inertial odometry approaches, for which we assume that all odometry poses are aligned with gravity. Set to 0 to disable gravity constraints. Currently supported only with g2o and GTSAM optimization strategies (see %s).", kOptimizerStrategy().c_str()));
421 #else
422  RTABMAP_PARAM(Optimizer, GravitySigma, float, 0.0, uFormat("Gravity sigma value (>=0, typically between 0.1 and 0.3). Optimization is done while preserving gravity orientation of the poses. This should be used only with visual/lidar inertial odometry approaches, for which we assume that all odometry poses are aligned with gravity. Set to 0 to disable gravity constraints. Currently supported only with g2o and GTSAM optimization strategies (see %s).", kOptimizerStrategy().c_str()));
423 #endif
424 
425 #ifdef RTABMAP_ORB_SLAM
426  RTABMAP_PARAM(g2o, Solver, int, 3, "0=csparse 1=pcg 2=cholmod 3=Eigen");
427 #else
428  RTABMAP_PARAM(g2o, Solver, int, 0, "0=csparse 1=pcg 2=cholmod 3=Eigen");
429 #endif
430  RTABMAP_PARAM(g2o, Optimizer, int, 0, "0=Levenberg 1=GaussNewton");
431  RTABMAP_PARAM(g2o, PixelVariance, double, 1.0, "Pixel variance used for bundle adjustment.");
432  RTABMAP_PARAM(g2o, RobustKernelDelta, double, 8, "Robust kernel delta used for bundle adjustment (0 means don't use robust kernel). Observations with chi2 over this threshold will be ignored in the second optimization pass.");
433  RTABMAP_PARAM(g2o, Baseline, double, 0.075, "When doing bundle adjustment with RGB-D data, we can set a fake baseline (m) to do stereo bundle adjustment (if 0, mono bundle adjustment is done). For stereo data, the baseline in the calibration is used directly.");
434 
435  RTABMAP_PARAM(GTSAM, Optimizer, int, 1, "0=Levenberg 1=GaussNewton 2=Dogleg");
436 
437  // Odometry
438  RTABMAP_PARAM(Odom, Strategy, int, 0, "0=Frame-to-Map (F2M) 1=Frame-to-Frame (F2F) 2=Fovis 3=viso2 4=DVO-SLAM 5=ORB_SLAM2 6=OKVIS 7=LOAM 8=MSCKF_VIO 9=VINS-Fusion 10=OpenVINS 11=FLOAM 12=Open3D");
439  RTABMAP_PARAM(Odom, ResetCountdown, int, 0, "Automatically reset odometry after X consecutive images on which odometry cannot be computed (value=0 disables auto-reset).");
440  RTABMAP_PARAM(Odom, Holonomic, bool, true, "If the robot is holonomic (strafing commands can be issued). If not, y value will be estimated from x and yaw values (y=x*tan(yaw)).");
441  RTABMAP_PARAM(Odom, FillInfoData, bool, true, "Fill info with data (inliers/outliers features).");
442  RTABMAP_PARAM(Odom, ImageBufferSize, unsigned int, 1, "Data buffer size (0 min inf).");
443  RTABMAP_PARAM(Odom, FilteringStrategy, int, 0, "0=No filtering 1=Kalman filtering 2=Particle filtering. This filter is used to smooth the odometry output.");
444  RTABMAP_PARAM(Odom, ParticleSize, unsigned int, 400, "Number of particles of the filter.");
445  RTABMAP_PARAM(Odom, ParticleNoiseT, float, 0.002, "Noise (m) of translation components (x,y,z).");
446  RTABMAP_PARAM(Odom, ParticleLambdaT, float, 100, "Lambda of translation components (x,y,z).");
447  RTABMAP_PARAM(Odom, ParticleNoiseR, float, 0.002, "Noise (rad) of rotational components (roll,pitch,yaw).");
448  RTABMAP_PARAM(Odom, ParticleLambdaR, float, 100, "Lambda of rotational components (roll,pitch,yaw).");
449  RTABMAP_PARAM(Odom, KalmanProcessNoise, float, 0.001, "Process noise covariance value.");
450  RTABMAP_PARAM(Odom, KalmanMeasurementNoise, float, 0.01, "Process measurement covariance value.");
451  RTABMAP_PARAM(Odom, GuessMotion, bool, true, "Guess next transformation from the last motion computed.");
452  RTABMAP_PARAM(Odom, GuessSmoothingDelay, float, 0, uFormat("Guess smoothing delay (s). Estimated velocity is averaged based on last transforms up to this maximum delay. This can help to get smoother velocity prediction. Last velocity computed is used directly if \"%s\" is set or the delay is below the odometry rate.", kOdomFilteringStrategy().c_str()));
453  RTABMAP_PARAM(Odom, KeyFrameThr, float, 0.3, "[Visual] Create a new keyframe when the number of inliers drops under this ratio of features in last frame. Setting the value to 0 means that a keyframe is created for each processed frame.");
454  RTABMAP_PARAM(Odom, VisKeyFrameThr, int, 150, "[Visual] Create a new keyframe when the number of inliers drops under this threshold. Setting the value to 0 means that a keyframe is created for each processed frame.");
455  RTABMAP_PARAM(Odom, ScanKeyFrameThr, float, 0.9, "[Geometry] Create a new keyframe when the number of ICP inliers drops under this ratio of points in last frame's scan. Setting the value to 0 means that a keyframe is created for each processed frame.");
456  RTABMAP_PARAM(Odom, ImageDecimation, unsigned int, 1, uFormat("Decimation of the RGB image before registration. If depth size is larger than decimated RGB size, depth is decimated to be always at most equal to RGB size. If %s is true and if depth is smaller than decimated RGB, depth may be interpolated to match RGB size for feature detection.", kVisDepthAsMask().c_str()));
457  RTABMAP_PARAM(Odom, AlignWithGround, bool, false, "Align odometry with the ground on initialization.");
458 
459  // Odometry Frame-to-Map
460  RTABMAP_PARAM(OdomF2M, MaxSize, int, 2000, "[Visual] Local map size: If > 0 (example 5000), the odometry will maintain a local map of X maximum words.");
461  RTABMAP_PARAM(OdomF2M, MaxNewFeatures, int, 0, "[Visual] Maximum features (sorted by keypoint response) added to local map from a new key-frame. 0 means no limit.");
462  RTABMAP_PARAM(OdomF2M, ScanMaxSize, int, 2000, "[Geometry] Maximum local scan map size.");
463  RTABMAP_PARAM(OdomF2M, ScanSubtractRadius, float, 0.05, "[Geometry] Radius used to filter points of a new added scan to local map. This could match the voxel size of the scans.");
464  RTABMAP_PARAM(OdomF2M, ScanSubtractAngle, float, 45, uFormat("[Geometry] Max angle (degrees) used to filter points of a new added scan to local map (when \"%s\">0). 0 means any angle.", kOdomF2MScanSubtractRadius().c_str()).c_str());
465  RTABMAP_PARAM(OdomF2M, ScanRange, float, 0, "[Geometry] Distance Range used to filter points of local map (when > 0). 0 means local map is updated using time and not range.");
466  RTABMAP_PARAM(OdomF2M, ValidDepthRatio, float, 0.75, "If a new frame has points without valid depth, they are added to local feature map only if points with valid depth on total points is over this ratio. Setting to 1 means no points without valid depth are added to local feature map.");
467 #if defined(RTABMAP_G2O) || defined(RTABMAP_ORB_SLAM)
468  RTABMAP_PARAM(OdomF2M, BundleAdjustment, int, 1, "Local bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
469 #else
470  RTABMAP_PARAM(OdomF2M, BundleAdjustment, int, 0, "Local bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
471 #endif
472  RTABMAP_PARAM(OdomF2M, BundleAdjustmentMaxFrames, int, 10, "Maximum frames used for bundle adjustment (0=inf or all current frames in the local map).");
473 
474  // Odometry Mono
475  RTABMAP_PARAM(OdomMono, InitMinFlow, float, 100, "Minimum optical flow required for the initialization step.");
476  RTABMAP_PARAM(OdomMono, InitMinTranslation, float, 0.1, "Minimum translation required for the initialization step.");
477  RTABMAP_PARAM(OdomMono, MinTranslation, float, 0.02, "Minimum translation to add new points to local map. On initialization, translation x 5 is used as the minimum.");
478  RTABMAP_PARAM(OdomMono, MaxVariance, float, 0.01, "Maximum variance to add new points to local map.");
479 
480  // Odometry Fovis
481  RTABMAP_PARAM(OdomFovis, FeatureWindowSize, int, 9, "The size of the n x n image patch surrounding each feature, used for keypoint matching.");
482  RTABMAP_PARAM(OdomFovis, MaxPyramidLevel, int, 3, "The maximum Gaussian pyramid level to process the image at. Pyramid level 1 corresponds to the original image.");
483  RTABMAP_PARAM(OdomFovis, MinPyramidLevel, int, 0, "The minimum pyramid level.");
484  RTABMAP_PARAM(OdomFovis, TargetPixelsPerFeature, int, 250, "Specifies the desired feature density as a ratio of input image pixels per feature detected. This number is used to control the adaptive feature thresholding.");
485  RTABMAP_PARAM(OdomFovis, FastThreshold, int, 20, "FAST threshold.");
486  RTABMAP_PARAM(OdomFovis, UseAdaptiveThreshold, bool, true, "Use FAST adaptive threshold.");
487  RTABMAP_PARAM(OdomFovis, FastThresholdAdaptiveGain, double, 0.005, "FAST threshold adaptive gain.");
488  RTABMAP_PARAM(OdomFovis, UseHomographyInitialization, bool, true, "Use homography initialization.");
489 
490  RTABMAP_PARAM(OdomFovis, UseBucketing, bool, true, "");
491  RTABMAP_PARAM(OdomFovis, BucketWidth, int, 80, "");
492  RTABMAP_PARAM(OdomFovis, BucketHeight, int, 80, "");
493  RTABMAP_PARAM(OdomFovis, MaxKeypointsPerBucket, int, 25, "");
494  RTABMAP_PARAM(OdomFovis, UseImageNormalization, bool, false, "");
495 
496  RTABMAP_PARAM(OdomFovis, InlierMaxReprojectionError, double, 1.5, "The maximum image-space reprojection error (in pixels) a feature match is allowed to have and still be considered an inlier in the set of features used for motion estimation.");
497  RTABMAP_PARAM(OdomFovis, CliqueInlierThreshold, double, 0.1, "See Howard's greedy max-clique algorithm for determining the maximum set of mutually consisten feature matches. This specifies the compatibility threshold, in meters.");
498  RTABMAP_PARAM(OdomFovis, MinFeaturesForEstimate, int, 20, "Minimum number of features in the inlier set for the motion estimate to be considered valid.");
499  RTABMAP_PARAM(OdomFovis, MaxMeanReprojectionError, double, 10.0, "Maximum mean reprojection error over the inlier feature matches for the motion estimate to be considered valid.");
500  RTABMAP_PARAM(OdomFovis, UseSubpixelRefinement, bool, true, "Specifies whether or not to refine feature matches to subpixel resolution.");
501  RTABMAP_PARAM(OdomFovis, FeatureSearchWindow, int, 25, "Specifies the size of the search window to apply when searching for feature matches across time frames. The search is conducted around the feature location predicted by the initial rotation estimate.");
502  RTABMAP_PARAM(OdomFovis, UpdateTargetFeaturesWithRefined, bool, false, "When subpixel refinement is enabled, the refined feature locations can be saved over the original feature locations. This has a slightly negative impact on frame-to-frame visual odometry, but is likely better when using this library as part of a visual SLAM algorithm.");
503 
504  RTABMAP_PARAM(OdomFovis, StereoRequireMutualMatch, bool, true, "");
505  RTABMAP_PARAM(OdomFovis, StereoMaxDistEpipolarLine, double, 1.5, "");
506  RTABMAP_PARAM(OdomFovis, StereoMaxRefinementDisplacement, double, 1.0, "");
507  RTABMAP_PARAM(OdomFovis, StereoMaxDisparity, int, 128, "");
508 
509  // Odometry viso2
510  RTABMAP_PARAM(OdomViso2, RansacIters, int, 200, "Number of RANSAC iterations.");
511  RTABMAP_PARAM(OdomViso2, InlierThreshold, double, 2.0, "Fundamental matrix inlier threshold.");
512  RTABMAP_PARAM(OdomViso2, Reweighting, bool, true, "Lower border weights (more robust to calibration errors).");
513  RTABMAP_PARAM(OdomViso2, MatchNmsN, int, 3, "Non-max-suppression: min. distance between maxima (in pixels).");
514  RTABMAP_PARAM(OdomViso2, MatchNmsTau, int, 50, "Non-max-suppression: interest point peakiness threshold.");
515  RTABMAP_PARAM(OdomViso2, MatchBinsize, int, 50, "Matching bin width/height (affects efficiency only).");
516  RTABMAP_PARAM(OdomViso2, MatchRadius, int, 200, "Matching radius (du/dv in pixels).");
517  RTABMAP_PARAM(OdomViso2, MatchDispTolerance, int, 2, "Disparity tolerance for stereo matches (in pixels).");
518  RTABMAP_PARAM(OdomViso2, MatchOutlierDispTolerance, int, 5, "Outlier removal: disparity tolerance (in pixels).");
519  RTABMAP_PARAM(OdomViso2, MatchOutlierFlowTolerance, int, 5, "Outlier removal: flow tolerance (in pixels).");
520  RTABMAP_PARAM(OdomViso2, MatchMultiStage, bool, true, "Multistage matching (denser and faster).");
521  RTABMAP_PARAM(OdomViso2, MatchHalfResolution, bool, true, "Match at half resolution, refine at full resolution.");
522  RTABMAP_PARAM(OdomViso2, MatchRefinement, int, 1, "Refinement (0=none,1=pixel,2=subpixel).");
523  RTABMAP_PARAM(OdomViso2, BucketMaxFeatures, int, 2, "Maximal number of features per bucket.");
524  RTABMAP_PARAM(OdomViso2, BucketWidth, double, 50, "Width of bucket.");
525  RTABMAP_PARAM(OdomViso2, BucketHeight, double, 50, "Height of bucket.");
526 
527  // Odometry ORB_SLAM2
528  RTABMAP_PARAM_STR(OdomORBSLAM, VocPath, "", "Path to ORB vocabulary (*.txt).");
529  RTABMAP_PARAM(OdomORBSLAM, Bf, double, 0.076, "Fake IR projector baseline (m) used only when stereo is not used.");
530  RTABMAP_PARAM(OdomORBSLAM, ThDepth, double, 40.0, "Close/Far threshold. Baseline times.");
531  RTABMAP_PARAM(OdomORBSLAM, Fps, float, 0.0, "Camera FPS.");
532  RTABMAP_PARAM(OdomORBSLAM, MaxFeatures, int, 1000, "Maximum ORB features extracted per frame.");
533  RTABMAP_PARAM(OdomORBSLAM, MapSize, int, 3000, "Maximum size of the feature map (0 means infinite).");
534 
535  // Odometry OKVIS
536  RTABMAP_PARAM_STR(OdomOKVIS, ConfigPath, "", "Path of OKVIS config file.");
537 
538  // Odometry LOAM
539  RTABMAP_PARAM(OdomLOAM, Sensor, int, 2, "Velodyne sensor: 0=VLP-16, 1=HDL-32, 2=HDL-64E");
540  RTABMAP_PARAM(OdomLOAM, ScanPeriod, float, 0.1, "Scan period (s)");
541  RTABMAP_PARAM(OdomLOAM, Resolution, float, 0.2, "Map resolution");
542  RTABMAP_PARAM(OdomLOAM, LinVar, float, 0.01, "Linear output variance.");
543  RTABMAP_PARAM(OdomLOAM, AngVar, float, 0.01, "Angular output variance.");
544  RTABMAP_PARAM(OdomLOAM, LocalMapping, bool, true, "Local mapping. It adds more time to compute odometry, but accuracy is significantly improved.");
545 
546  // Odometry MSCKF_VIO
547  RTABMAP_PARAM(OdomMSCKF, GridRow, int, 4, "");
548  RTABMAP_PARAM(OdomMSCKF, GridCol, int, 5, "");
549  RTABMAP_PARAM(OdomMSCKF, GridMinFeatureNum, int, 3, "");
550  RTABMAP_PARAM(OdomMSCKF, GridMaxFeatureNum, int, 4, "");
551  RTABMAP_PARAM(OdomMSCKF, PyramidLevels, int, 3, "");
552  RTABMAP_PARAM(OdomMSCKF, PatchSize, int, 15, "");
553  RTABMAP_PARAM(OdomMSCKF, FastThreshold, int, 10, "");
554  RTABMAP_PARAM(OdomMSCKF, MaxIteration, int, 30, "");
555  RTABMAP_PARAM(OdomMSCKF, TrackPrecision, double, 0.01, "");
556  RTABMAP_PARAM(OdomMSCKF, RansacThreshold, double, 3, "");
557  RTABMAP_PARAM(OdomMSCKF, StereoThreshold, double, 5, "");
558  RTABMAP_PARAM(OdomMSCKF, PositionStdThreshold, double, 8.0, "");
559  RTABMAP_PARAM(OdomMSCKF, RotationThreshold, double, 0.2618, "");
560  RTABMAP_PARAM(OdomMSCKF, TranslationThreshold, double, 0.4, "");
561  RTABMAP_PARAM(OdomMSCKF, TrackingRateThreshold, double, 0.5, "");
562  RTABMAP_PARAM(OdomMSCKF, OptTranslationThreshold, double, 0, "");
563  RTABMAP_PARAM(OdomMSCKF, NoiseGyro, double, 0.005, "");
564  RTABMAP_PARAM(OdomMSCKF, NoiseAcc, double, 0.05, "");
565  RTABMAP_PARAM(OdomMSCKF, NoiseGyroBias, double, 0.001, "");
566  RTABMAP_PARAM(OdomMSCKF, NoiseAccBias, double, 0.01, "");
567  RTABMAP_PARAM(OdomMSCKF, NoiseFeature, double, 0.035, "");
568  RTABMAP_PARAM(OdomMSCKF, InitCovVel, double, 0.25, "");
569  RTABMAP_PARAM(OdomMSCKF, InitCovGyroBias, double, 0.01, "");
570  RTABMAP_PARAM(OdomMSCKF, InitCovAccBias, double, 0.01, "");
571  RTABMAP_PARAM(OdomMSCKF, InitCovExRot, double, 0.00030462, "");
572  RTABMAP_PARAM(OdomMSCKF, InitCovExTrans, double, 0.000025, "");
573  RTABMAP_PARAM(OdomMSCKF, MaxCamStateSize, int, 20, "");
574 
575  // Odometry VINS
576  RTABMAP_PARAM_STR(OdomVINS, ConfigPath, "", "Path of VINS config file.");
577 
578  // Odometry Open3D
579  RTABMAP_PARAM(OdomOpen3D, MaxDepth, float, 3.0, "Maximum depth.");
580  RTABMAP_PARAM(OdomOpen3D, Method, int, 0, "Registration method: 0=PointToPlane, 1=Intensity, 2=Hybrid.");
581 
582  // Common registration parameters
583  RTABMAP_PARAM(Reg, RepeatOnce, bool, true, "Do a second registration with the output of the first registration as guess. Only done if no guess was provided for the first registration (like on loop closure). It can be useful if the registration approach used can use a guess to get better matches.");
584  RTABMAP_PARAM(Reg, Strategy, int, 0, "0=Vis, 1=Icp, 2=VisIcp");
585  RTABMAP_PARAM(Reg, Force3DoF, bool, false, "Force 3 degrees-of-freedom transform (3Dof: x,y and yaw). Parameters z, roll and pitch will be set to 0.");
586 
587  // Visual registration parameters
588  RTABMAP_PARAM(Vis, EstimationType, int, 1, "Motion estimation approach: 0:3D->3D, 1:3D->2D (PnP), 2:2D->2D (Epipolar Geometry)");
589  RTABMAP_PARAM(Vis, ForwardEstOnly, bool, true, "Forward estimation only (A->B). If false, a transformation is also computed in backward direction (B->A), then the two resulting transforms are merged (middle interpolation between the transforms).");
590  RTABMAP_PARAM(Vis, InlierDistance, float, 0.1, uFormat("[%s = 0] Maximum distance for feature correspondences. Used by 3D->3D estimation approach.", kVisEstimationType().c_str()));
591  RTABMAP_PARAM(Vis, RefineIterations, int, 5, uFormat("[%s = 0] Number of iterations used to refine the transformation found by RANSAC. 0 means that the transformation is not refined.", kVisEstimationType().c_str()));
592  RTABMAP_PARAM(Vis, PnPReprojError, float, 2, uFormat("[%s = 1] PnP reprojection error.", kVisEstimationType().c_str()));
593  RTABMAP_PARAM(Vis, PnPFlags, int, 0, uFormat("[%s = 1] PnP flags: 0=Iterative, 1=EPNP, 2=P3P", kVisEstimationType().c_str()));
594 #if defined(RTABMAP_G2O) || defined(RTABMAP_ORB_SLAM)
595  RTABMAP_PARAM(Vis, PnPRefineIterations, int, 0, uFormat("[%s = 1] Refine iterations. Set to 0 if \"%s\" is also used.", kVisEstimationType().c_str(), kVisBundleAdjustment().c_str()));
596 #else
597  RTABMAP_PARAM(Vis, PnPRefineIterations, int, 1, uFormat("[%s = 1] Refine iterations. Set to 0 if \"%s\" is also used.", kVisEstimationType().c_str(), kVisBundleAdjustment().c_str()));
598 #endif
599  RTABMAP_PARAM(Vis, PnPMaxVariance, float, 0.0, uFormat("[%s = 1] Max linear variance between 3D point correspondences after PnP. 0 means disabled.", kVisEstimationType().c_str()));
600 
601  RTABMAP_PARAM(Vis, EpipolarGeometryVar, float, 0.1, uFormat("[%s = 2] Epipolar geometry maximum variance to accept the transformation.", kVisEstimationType().c_str()));
602  RTABMAP_PARAM(Vis, MinInliers, int, 20, "Minimum feature correspondences to compute/accept the transformation.");
603  RTABMAP_PARAM(Vis, MeanInliersDistance, float, 0.0, "Maximum distance (m) of the mean distance of inliers from the camera to accept the transformation. 0 means disabled.");
604  RTABMAP_PARAM(Vis, MinInliersDistribution, float, 0.0, "Minimum distribution value of the inliers in the image to accept the transformation. The distribution is the second eigen value of the PCA (Principal Component Analysis) on the keypoints of the normalized image [-0.5, 0.5]. The value would be between 0 and 0.5. 0 means disabled.");
605 
606  RTABMAP_PARAM(Vis, Iterations, int, 300, "Maximum iterations to compute the transform.");
607 #if CV_MAJOR_VERSION > 2 && !defined(HAVE_OPENCV_XFEATURES2D)
608  // OpenCV>2 without xFeatures2D module doesn't have BRIEF
609  RTABMAP_PARAM(Vis, FeatureType, int, 8, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY 15=PyDetector");
610 #else
611  RTABMAP_PARAM(Vis, FeatureType, int, 6, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY 15=PyDetector");
612 #endif
613  RTABMAP_PARAM(Vis, MaxFeatures, int, 1000, "0 no limits.");
614  RTABMAP_PARAM(Vis, MaxDepth, float, 0, "Max depth of the features (0 means no limit).");
615  RTABMAP_PARAM(Vis, MinDepth, float, 0, "Min depth of the features (0 means no limit).");
616  RTABMAP_PARAM(Vis, DepthAsMask, bool, true, "Use depth image as mask when extracting features.");
617  RTABMAP_PARAM_STR(Vis, RoiRatios, "0.0 0.0 0.0 0.0", "Region of interest ratios [left, right, top, bottom].");
618  RTABMAP_PARAM(Vis, SubPixWinSize, int, 3, "See cv::cornerSubPix().");
619  RTABMAP_PARAM(Vis, SubPixIterations, int, 0, "See cv::cornerSubPix(). 0 disables sub pixel refining.");
620  RTABMAP_PARAM(Vis, SubPixEps, float, 0.02, "See cv::cornerSubPix().");
621  RTABMAP_PARAM(Vis, GridRows, int, 1, uFormat("Number of rows of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kVisMaxFeatures().c_str()));
622  RTABMAP_PARAM(Vis, GridCols, int, 1, uFormat("Number of columns of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kVisMaxFeatures().c_str()));
623  RTABMAP_PARAM(Vis, CorType, int, 0, "Correspondences computation approach: 0=Features Matching, 1=Optical Flow");
624  RTABMAP_PARAM(Vis, CorNNType, int, 1, uFormat("[%s=0] kNNFlannNaive=0, kNNFlannKdTree=1, kNNFlannLSH=2, kNNBruteForce=3, kNNBruteForceGPU=4, BruteForceCrossCheck=5, SuperGlue=6, GMS=7. Used for features matching approach.", kVisCorType().c_str()));
625  RTABMAP_PARAM(Vis, CorNNDR, float, 0.8, uFormat("[%s=0] NNDR: nearest neighbor distance ratio. Used for knn features matching approach.", kVisCorType().c_str()));
626  RTABMAP_PARAM(Vis, CorGuessWinSize, int, 40, uFormat("[%s=0] Matching window size (pixels) around projected points when a guess transform is provided to find correspondences. 0 means disabled.", kVisCorType().c_str()));
627  RTABMAP_PARAM(Vis, CorGuessMatchToProjection, bool, false, uFormat("[%s=0] Match frame's corners to source's projected points (when guess transform is provided) instead of projected points to frame's corners.", kVisCorType().c_str()));
628  RTABMAP_PARAM(Vis, CorFlowWinSize, int, 16, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
629  RTABMAP_PARAM(Vis, CorFlowIterations, int, 30, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
630  RTABMAP_PARAM(Vis, CorFlowEps, float, 0.01, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
631  RTABMAP_PARAM(Vis, CorFlowMaxLevel, int, 3, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
632 #if defined(RTABMAP_G2O) || defined(RTABMAP_ORB_SLAM)
633  RTABMAP_PARAM(Vis, BundleAdjustment, int, 1, "Optimization with bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
634 #else
635  RTABMAP_PARAM(Vis, BundleAdjustment, int, 0, "Optimization with bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
636 #endif
637 
638  // Features matching approaches
639  RTABMAP_PARAM_STR(PyMatcher, Path, "", "Path to python script file (see available ones in rtabmap/corelib/src/python/*). See the header to see where the script should be copied.");
640  RTABMAP_PARAM(PyMatcher, Iterations, int, 20, "Sinkhorn iterations. Used by SuperGlue.");
641  RTABMAP_PARAM(PyMatcher, Threshold, float, 0.2, "Used by SuperGlue.");
642  RTABMAP_PARAM(PyMatcher, Cuda, bool, true, "Used by SuperGlue.");
643  RTABMAP_PARAM_STR(PyMatcher, Model, "indoor", "For SuperGlue, set only \"indoor\" or \"outdoor\". For OANet, set path to one of the pth file (e.g., \"OANet/model/gl3d/sift-4000/model_best.pth\").");
644 
645  RTABMAP_PARAM(GMS, WithRotation, bool, false, "Take rotation transformation into account.");
646  RTABMAP_PARAM(GMS, WithScale, bool, false, "Take scale transformation into account.");
647  RTABMAP_PARAM(GMS, ThresholdFactor, double, 6.0, "The higher, the less matches.");
648 
649  // ICP registration parameters
650 #ifdef RTABMAP_POINTMATCHER
651  RTABMAP_PARAM(Icp, Strategy, int, 1, "ICP implementation: 0=Point Cloud Library, 1=libpointmatcher, 2=CCCoreLib (CloudCompare).");
652 #else
653  RTABMAP_PARAM(Icp, Strategy, int, 0, "ICP implementation: 0=Point Cloud Library, 1=libpointmatcher, 2=CCCoreLib (CloudCompare).");
654 #endif
655  RTABMAP_PARAM(Icp, MaxTranslation, float, 0.2, "Maximum ICP translation correction accepted (m).");
656  RTABMAP_PARAM(Icp, MaxRotation, float, 0.78, "Maximum ICP rotation correction accepted (rad).");
657  RTABMAP_PARAM(Icp, VoxelSize, float, 0.05, "Uniform sampling voxel size (0=disabled).");
658  RTABMAP_PARAM(Icp, DownsamplingStep, int, 1, "Downsampling step size (1=no sampling). This is done before uniform sampling.");
659  RTABMAP_PARAM(Icp, RangeMin, float, 0, "Minimum range filtering (0=disabled).");
660  RTABMAP_PARAM(Icp, RangeMax, float, 0, "Maximum range filtering (0=disabled).");
661 #ifdef RTABMAP_POINTMATCHER
662  RTABMAP_PARAM(Icp, MaxCorrespondenceDistance, float, 0.1, "Max distance for point correspondences.");
663 #else
664  RTABMAP_PARAM(Icp, MaxCorrespondenceDistance, float, 0.05, "Max distance for point correspondences.");
665 #endif
666  RTABMAP_PARAM(Icp, Iterations, int, 30, "Max iterations.");
667  RTABMAP_PARAM(Icp, Epsilon, float, 0, "Set the transformation epsilon (maximum allowable difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution.");
668  RTABMAP_PARAM(Icp, CorrespondenceRatio, float, 0.1, "Ratio of matching correspondences to accept the transform.");
669  RTABMAP_PARAM(Icp, Force4DoF, bool, false, uFormat("Limit ICP to x, y, z and yaw DoF. Available if %s > 0.", kIcpStrategy().c_str()));
670 #ifdef RTABMAP_POINTMATCHER
671  RTABMAP_PARAM(Icp, PointToPlane, bool, true, "Use point to plane ICP.");
672 #else
673  RTABMAP_PARAM(Icp, PointToPlane, bool, false, "Use point to plane ICP.");
674 #endif
675  RTABMAP_PARAM(Icp, PointToPlaneK, int, 5, "Number of neighbors to compute normals for point to plane if the cloud doesn't have already normals.");
676  RTABMAP_PARAM(Icp, PointToPlaneRadius, float, 0.0, "Search radius to compute normals for point to plane if the cloud doesn't have already normals.");
677  RTABMAP_PARAM(Icp, PointToPlaneGroundNormalsUp, float, 0.0, "Invert normals on ground if they are pointing down (useful for ring-like 3D LiDARs). 0 means disabled, 1 means only normals perfectly aligned with -z axis. This is only done with 3D scans.");
678  RTABMAP_PARAM(Icp, PointToPlaneMinComplexity, float, 0.02, uFormat("Minimum structural complexity (0.0=low, 1.0=high) of the scan to do PointToPlane registration, otherwise PointToPoint registration is done instead and strategy from %s is used. This check is done only when %s=true.", kIcpPointToPlaneLowComplexityStrategy().c_str(), kIcpPointToPlane().c_str()));
679  RTABMAP_PARAM(Icp, PointToPlaneLowComplexityStrategy, int, 1, uFormat("If structural complexity is below %s: set to 0 to so that the transform is automatically rejected, set to 1 to limit ICP correction in axes with most constraints (e.g., for a corridor-like environment, the resulting transform will be limited in y and yaw, x will taken from the guess), set to 2 to accept \"as is\" the transform computed by PointToPoint.", kIcpPointToPlaneMinComplexity().c_str()));
680  RTABMAP_PARAM(Icp, OutlierRatio, float, 0.85, uFormat("Outlier ratio used with %s>0. For libpointmatcher, this parameter set TrimmedDistOutlierFilter/ratio for convenience when configuration file is not set. For CCCoreLib, this parameter set the \"finalOverlapRatio\". The value should be between 0 and 1.", kIcpStrategy().c_str()));
681  RTABMAP_PARAM_STR(Icp, DebugExportFormat, "", "Export scans used for ICP in the specified format (a warning on terminal will be shown with the file paths used). Supported formats are \"pcd\", \"ply\" or \"vtk\". If logger level is debug, from and to scans will stamped, so previous files won't be overwritten.");
682 
683  // libpointmatcher
684  RTABMAP_PARAM_STR(Icp, PMConfig, "", uFormat("Configuration file (*.yaml) used by libpointmatcher. Note that data filters set for libpointmatcher are done after filtering done by rtabmap (i.e., %s, %s), so make sure to disable those in rtabmap if you want to use only those from libpointmatcher. Parameters %s, %s and %s are also ignored if configuration file is set.", kIcpVoxelSize().c_str(), kIcpDownsamplingStep().c_str(), kIcpIterations().c_str(), kIcpEpsilon().c_str(), kIcpMaxCorrespondenceDistance().c_str()).c_str());
685  RTABMAP_PARAM(Icp, PMMatcherKnn, int, 1, "KDTreeMatcher/knn: number of nearest neighbors to consider it the reference. For convenience when configuration file is not set.");
686  RTABMAP_PARAM(Icp, PMMatcherEpsilon, float, 0.0, "KDTreeMatcher/epsilon: approximation to use for the nearest-neighbor search. For convenience when configuration file is not set.");
687  RTABMAP_PARAM(Icp, PMMatcherIntensity, bool, false, uFormat("KDTreeMatcher: among nearest neighbors, keep only the one with the most similar intensity. This only work with %s>1.", kIcpPMMatcherKnn().c_str()));
688 
689  RTABMAP_PARAM(Icp, CCSamplingLimit, unsigned int, 50000, "Maximum number of points per cloud (they are randomly resampled below this limit otherwise).");
690  RTABMAP_PARAM(Icp, CCFilterOutFarthestPoints, bool, false, "If true, the algorithm will automatically ignore farthest points from the reference, for better convergence.");
691  RTABMAP_PARAM(Icp, CCMaxFinalRMS, float, 0.2, "Maximum final RMS error.");
692 
693  // Stereo disparity
694  RTABMAP_PARAM(Stereo, WinWidth, int, 15, "Window width.");
695  RTABMAP_PARAM(Stereo, WinHeight, int, 3, "Window height.");
696  RTABMAP_PARAM(Stereo, Iterations, int, 30, "Maximum iterations.");
697  RTABMAP_PARAM(Stereo, MaxLevel, int, 5, "Maximum pyramid level.");
698  RTABMAP_PARAM(Stereo, MinDisparity, float, 0.5, "Minimum disparity.");
699  RTABMAP_PARAM(Stereo, MaxDisparity, float, 128.0, "Maximum disparity.");
700  RTABMAP_PARAM(Stereo, OpticalFlow, bool, true, "Use optical flow to find stereo correspondences, otherwise a simple block matching approach is used.");
701  RTABMAP_PARAM(Stereo, SSD, bool, true, uFormat("[%s=false] Use Sum of Squared Differences (SSD) window, otherwise Sum of Absolute Differences (SAD) window is used.", kStereoOpticalFlow().c_str()));
702  RTABMAP_PARAM(Stereo, Eps, double, 0.01, uFormat("[%s=true] Epsilon stop criterion.", kStereoOpticalFlow().c_str()));
703 
704  RTABMAP_PARAM(Stereo, DenseStrategy, int, 0, "0=cv::StereoBM, 1=cv::StereoSGBM");
705 
706  RTABMAP_PARAM(StereoBM, BlockSize, int, 15, "See cv::StereoBM");
707  RTABMAP_PARAM(StereoBM, MinDisparity, int, 0, "See cv::StereoBM");
708  RTABMAP_PARAM(StereoBM, NumDisparities, int, 128, "See cv::StereoBM");
709  RTABMAP_PARAM(StereoBM, PreFilterSize, int, 9, "See cv::StereoBM");
710  RTABMAP_PARAM(StereoBM, PreFilterCap, int, 31, "See cv::StereoBM");
711  RTABMAP_PARAM(StereoBM, UniquenessRatio, int, 15, "See cv::StereoBM");
712  RTABMAP_PARAM(StereoBM, TextureThreshold, int, 10, "See cv::StereoBM");
713  RTABMAP_PARAM(StereoBM, SpeckleWindowSize, int, 100, "See cv::StereoBM");
714  RTABMAP_PARAM(StereoBM, SpeckleRange, int, 4, "See cv::StereoBM");
715  RTABMAP_PARAM(StereoBM, Disp12MaxDiff, int, -1, "See cv::StereoBM");
716 
717  RTABMAP_PARAM(StereoSGBM, BlockSize, int, 15, "See cv::StereoSGBM");
718  RTABMAP_PARAM(StereoSGBM, MinDisparity, int, 0, "See cv::StereoSGBM");
719  RTABMAP_PARAM(StereoSGBM, NumDisparities, int, 128, "See cv::StereoSGBM");
720  RTABMAP_PARAM(StereoSGBM, PreFilterCap, int, 31, "See cv::StereoSGBM");
721  RTABMAP_PARAM(StereoSGBM, UniquenessRatio, int, 20, "See cv::StereoSGBM");
722  RTABMAP_PARAM(StereoSGBM, SpeckleWindowSize, int, 100, "See cv::StereoSGBM");
723  RTABMAP_PARAM(StereoSGBM, SpeckleRange, int, 4, "See cv::StereoSGBM");
724  RTABMAP_PARAM(StereoSGBM, Disp12MaxDiff, int, 1, "See cv::StereoSGBM");
725  RTABMAP_PARAM(StereoSGBM, P1, int, 2, "See cv::StereoSGBM");
726  RTABMAP_PARAM(StereoSGBM, P2, int, 5, "See cv::StereoSGBM");
727 #if CV_MAJOR_VERSION < 3
728  RTABMAP_PARAM(StereoSGBM, Mode, int, 0, "See cv::StereoSGBM");
729 #else
730  RTABMAP_PARAM(StereoSGBM, Mode, int, 2, "See cv::StereoSGBM");
731 #endif
732 
733  // Occupancy Grid
734  RTABMAP_PARAM(Grid, Sensor, int, 1, "Create occupancy grid from selected sensor: 0=laser scan, 1=depth image(s) or 2=both laser scan and depth image(s).");
735  RTABMAP_PARAM(Grid, DepthDecimation, unsigned int, 4, uFormat("[%s=true] Decimation of the depth image before creating cloud.", kGridDepthDecimation().c_str()));
736  RTABMAP_PARAM(Grid, RangeMin, float, 0.0, "Minimum range from sensor.");
737  RTABMAP_PARAM(Grid, RangeMax, float, 5.0, "Maximum range from sensor. 0=inf.");
738  RTABMAP_PARAM_STR(Grid, DepthRoiRatios, "0.0 0.0 0.0 0.0", uFormat("[%s>=1] Region of interest ratios [left, right, top, bottom].", kGridSensor().c_str()));
739  RTABMAP_PARAM(Grid, FootprintLength, float, 0.0, "Footprint length used to filter points over the footprint of the robot.");
740  RTABMAP_PARAM(Grid, FootprintWidth, float, 0.0, "Footprint width used to filter points over the footprint of the robot. Footprint length should be set.");
741  RTABMAP_PARAM(Grid, FootprintHeight, float, 0.0, "Footprint height used to filter points over the footprint of the robot. Footprint length and width should be set.");
742  RTABMAP_PARAM(Grid, ScanDecimation, int, 1, uFormat("[%s=0 or 2] Decimation of the laser scan before creating cloud.", kGridSensor().c_str()));
743  RTABMAP_PARAM(Grid, CellSize, float, 0.05, "Resolution of the occupancy grid.");
744  RTABMAP_PARAM(Grid, PreVoxelFiltering, bool, true, uFormat("Input cloud is downsampled by voxel filter (voxel size is \"%s\") before doing segmentation of obstacles and ground.", kGridCellSize().c_str()));
745  RTABMAP_PARAM(Grid, MapFrameProjection, bool, false, "Projection in map frame. On a 3D terrain and a fixed local camera transform (the cloud is created relative to ground), you may want to disable this to do the projection in robot frame instead.");
746  RTABMAP_PARAM(Grid, NormalsSegmentation, bool, true, "Segment ground from obstacles using point normals, otherwise a fast passthrough is used.");
747  RTABMAP_PARAM(Grid, MaxObstacleHeight, float, 0.0, "Maximum obstacles height (0=disabled).");
748  RTABMAP_PARAM(Grid, MinGroundHeight, float, 0.0, "Minimum ground height (0=disabled).");
749  RTABMAP_PARAM(Grid, MaxGroundHeight, float, 0.0, uFormat("Maximum ground height (0=disabled). Should be set if \"%s\" is false.", kGridNormalsSegmentation().c_str()));
750  RTABMAP_PARAM(Grid, MaxGroundAngle, float, 45, uFormat("[%s=true] Maximum angle (degrees) between point's normal to ground's normal to label it as ground. Points with higher angle difference are considered as obstacles.", kGridNormalsSegmentation().c_str()));
751  RTABMAP_PARAM(Grid, NormalK, int, 20, uFormat("[%s=true] K neighbors to compute normals.", kGridNormalsSegmentation().c_str()));
752  RTABMAP_PARAM(Grid, ClusterRadius, float, 0.1, uFormat("[%s=true] Cluster maximum radius.", kGridNormalsSegmentation().c_str()));
753  RTABMAP_PARAM(Grid, MinClusterSize, int, 10, uFormat("[%s=true] Minimum cluster size to project the points.", kGridNormalsSegmentation().c_str()));
754  RTABMAP_PARAM(Grid, FlatObstacleDetected, bool, true, uFormat("[%s=true] Flat obstacles detected.", kGridNormalsSegmentation().c_str()));
755 #ifdef RTABMAP_OCTOMAP
756  RTABMAP_PARAM(Grid, 3D, bool, true, uFormat("A 3D occupancy grid is required if you want an OctoMap (3D ray tracing). Set to false if you want only a 2D map, the cloud will be projected on xy plane. A 2D map can be still generated if checked, but it requires more memory and time to generate it. Ignored if laser scan is 2D and \"%s\" is 0.", kGridSensor().c_str()));
757 #else
758  RTABMAP_PARAM(Grid, 3D, bool, false, uFormat("A 3D occupancy grid is required if you want an OctoMap (3D ray tracing). Set to false if you want only a 2D map, the cloud will be projected on xy plane. A 2D map can be still generated if checked, but it requires more memory and time to generate it. Ignored if laser scan is 2D and \"%s\" is 0.", kGridSensor().c_str()));
759 #endif
760  RTABMAP_PARAM(Grid, GroundIsObstacle, bool, false, uFormat("[%s=true] Ground segmentation (%s) is ignored, all points are obstacles. Use this only if you want an OctoMap with ground identified as an obstacle (e.g., with an UAV).", kGrid3D().c_str(), kGridNormalsSegmentation().c_str()));
761  RTABMAP_PARAM(Grid, NoiseFilteringRadius, float, 0.0, "Noise filtering radius (0=disabled). Done after segmentation.");
762  RTABMAP_PARAM(Grid, NoiseFilteringMinNeighbors, int, 5, "Noise filtering minimum neighbors.");
763  RTABMAP_PARAM(Grid, Scan2dUnknownSpaceFilled, bool, false, uFormat("Unknown space filled. Only used with 2D laser scans. Use %s to set maximum range if laser scan max range is to set.", kGridRangeMax().c_str()));
764  RTABMAP_PARAM(Grid, RayTracing, bool, false, uFormat("Ray tracing is done for each occupied cell, filling unknown space between the sensor and occupied cells. If %s=true, RTAB-Map should be built with OctoMap support, otherwise 3D ray tracing is ignored.", kGrid3D().c_str()));
765 
766  RTABMAP_PARAM(GridGlobal, FullUpdate, bool, true, "When the graph is changed, the whole map will be reconstructed instead of moving individually each cells of the map. Also, data added to cache won't be released after updating the map. This process is longer but more robust to drift that would erase some parts of the map when it should not.");
767  RTABMAP_PARAM(GridGlobal, UpdateError, float, 0.01, "Graph changed detection error (m). Update map only if poses in new optimized graph have moved more than this value.");
768  RTABMAP_PARAM(GridGlobal, FootprintRadius, float, 0.0, "Footprint radius (m) used to clear all obstacles under the graph.");
769  RTABMAP_PARAM(GridGlobal, MinSize, float, 0.0, "Minimum map size (m).");
770  RTABMAP_PARAM(GridGlobal, Eroded, bool, false, "Erode obstacle cells.");
771  RTABMAP_PARAM(GridGlobal, MaxNodes, int, 0, "Maximum nodes assembled in the map starting from the last node (0=unlimited).");
772  RTABMAP_PARAM(GridGlobal, AltitudeDelta, float, 0, "Assemble only nodes that have the same altitude of +-delta meters of the current pose (0=disabled). This is used to generate 2D occupancy grid based on the current altitude (e.g., multi-floor building).");
773  RTABMAP_PARAM(GridGlobal, OccupancyThr, float, 0.5, "Occupancy threshold (value between 0 and 1).");
774  RTABMAP_PARAM(GridGlobal, ProbHit, float, 0.7, "Probability of a hit (value between 0.5 and 1).");
775  RTABMAP_PARAM(GridGlobal, ProbMiss, float, 0.4, "Probability of a miss (value between 0 and 0.5).");
776  RTABMAP_PARAM(GridGlobal, ProbClampingMin, float, 0.1192, "Probability clamping minimum (value between 0 and 1).");
777  RTABMAP_PARAM(GridGlobal, ProbClampingMax, float, 0.971, "Probability clamping maximum (value between 0 and 1).");
778  RTABMAP_PARAM(GridGlobal, FloodFillDepth, unsigned int, 0, "Flood fill filter (0=disabled), used to remove empty cells outside the map. The flood fill is done at the specified depth (between 1 and 16) of the OctoMap.");
779 
780  RTABMAP_PARAM(Marker, Dictionary, int, 0, "Dictionary to use: DICT_ARUCO_4X4_50=0, DICT_ARUCO_4X4_100=1, DICT_ARUCO_4X4_250=2, DICT_ARUCO_4X4_1000=3, DICT_ARUCO_5X5_50=4, DICT_ARUCO_5X5_100=5, DICT_ARUCO_5X5_250=6, DICT_ARUCO_5X5_1000=7, DICT_ARUCO_6X6_50=8, DICT_ARUCO_6X6_100=9, DICT_ARUCO_6X6_250=10, DICT_ARUCO_6X6_1000=11, DICT_ARUCO_7X7_50=12, DICT_ARUCO_7X7_100=13, DICT_ARUCO_7X7_250=14, DICT_ARUCO_7X7_1000=15, DICT_ARUCO_ORIGINAL = 16, DICT_APRILTAG_16h5=17, DICT_APRILTAG_25h9=18, DICT_APRILTAG_36h10=19, DICT_APRILTAG_36h11=20");
781  RTABMAP_PARAM(Marker, Length, float, 0, "The length (m) of the markers' side. 0 means automatic marker length estimation using the depth image (the camera should look at the marker perpendicularly for initialization).");
782  RTABMAP_PARAM(Marker, MaxDepthError, float, 0.01, uFormat("Maximum depth error between all corners of a marker when estimating the marker length (when %s is 0). The smaller it is, the more perpendicular the camera should be toward the marker to initialize the length.", kMarkerLength().c_str()));
783  RTABMAP_PARAM(Marker, VarianceLinear, float, 0.001, "Linear variance to set on marker detections.");
784  RTABMAP_PARAM(Marker, VarianceAngular, float, 0.01, "Angular variance to set on marker detections. Set to >=9999 to use only position (xyz) constraint in graph optimization.");
785  RTABMAP_PARAM(Marker, CornerRefinementMethod, int, 0, "Corner refinement method (0: None, 1: Subpixel, 2:contour, 3: AprilTag2). For OpenCV <3.3.0, this is \"doCornerRefinement\" parameter: set 0 for false and 1 for true.");
786  RTABMAP_PARAM(Marker, MaxRange, float, 0.0, "Maximum range in which markers will be detected. <=0 for unlimited range.");
787  RTABMAP_PARAM(Marker, MinRange, float, 0.0, "Miniminum range in which markers will be detected. <=0 for unlimited range.");
788  RTABMAP_PARAM_STR(Marker, Priors, "", "World prior locations of the markers. The map will be transformed in marker's world frame when a tag is detected. Format is the marker's ID followed by its position (angles in rad), markers are separated by vertical line (\"id1 x y z roll pitch yaw|id2 x y z roll pitch yaw\"). Example: \"1 0 0 1 0 0 0|2 1 0 1 0 0 1.57\" (marker 2 is 1 meter forward than marker 1 with 90 deg yaw rotation).");
789  RTABMAP_PARAM(Marker, PriorsVarianceLinear, float, 0.001, "Linear variance to set on marker priors.");
790  RTABMAP_PARAM(Marker, PriorsVarianceAngular, float, 0.001, "Angular variance to set on marker priors.");
791 
792  RTABMAP_PARAM(ImuFilter, MadgwickGain, double, 0.1, "Gain of the filter. Higher values lead to faster convergence but more noise. Lower values lead to slower convergence but smoother signal, belongs in [0, 1].");
793  RTABMAP_PARAM(ImuFilter, MadgwickZeta, double, 0.0, "Gyro drift gain (approx. rad/s), belongs in [-1, 1].");
794 
795  RTABMAP_PARAM(ImuFilter, ComplementaryGainAcc, double, 0.01, "Gain parameter for the complementary filter, belongs in [0, 1].");
796  RTABMAP_PARAM(ImuFilter, ComplementaryBiasAlpha, double, 0.01, "Bias estimation gain parameter, belongs in [0, 1].");
797  RTABMAP_PARAM(ImuFilter, ComplementaryDoBiasEstimation, bool, true, "Parameter whether to do bias estimation or not.");
798  RTABMAP_PARAM(ImuFilter, ComplementaryDoAdpativeGain, bool, true, "Parameter whether to do adaptive gain or not.");
799 
800 public:
801  virtual ~Parameters();
802 
807  static const ParametersMap & getDefaultParameters()
808  {
809  return parameters_;
810  }
811 
816  static std::string getType(const std::string & paramKey);
817 
822  static std::string getDescription(const std::string & paramKey);
823 
824  static bool parse(const ParametersMap & parameters, const std::string & key, bool & value);
825  static bool parse(const ParametersMap & parameters, const std::string & key, int & value);
826  static bool parse(const ParametersMap & parameters, const std::string & key, unsigned int & value);
827  static bool parse(const ParametersMap & parameters, const std::string & key, float & value);
828  static bool parse(const ParametersMap & parameters, const std::string & key, double & value);
829  static bool parse(const ParametersMap & parameters, const std::string & key, std::string & value);
830  static void parse(const ParametersMap & parameters, ParametersMap & parametersOut);
831 
832  static const char * showUsage();
833  static ParametersMap parseArguments(int argc, char * argv[], bool onlyParameters = false);
834 
835  static std::string getVersion();
836  static std::string getDefaultDatabaseName();
837 
838  static std::string serialize(const ParametersMap & parameters);
839  static ParametersMap deserialize(const std::string & parameters);
840 
841  static bool isFeatureParameter(const std::string & param);
842  static ParametersMap getDefaultOdometryParameters(bool stereo = false, bool vis = true, bool icp = false);
843  static ParametersMap getDefaultParameters(const std::string & group);
848  static ParametersMap filterParameters(const ParametersMap & parameters, const std::string & group, bool remove = false);
849 
850  static void readINI(const std::string & configFile, ParametersMap & parameters, bool modifiedOnly = false);
851  static void writeINI(const std::string & configFile, const ParametersMap & parameters);
852 
857  static const std::map<std::string, std::pair<bool, std::string> > & getRemovedParameters();
858 
862  static const ParametersMap & getBackwardCompatibilityMap();
863 
864  static std::string createDefaultWorkingDirectory();
865 
866 private:
867  Parameters();
868 
869 private:
870  static ParametersMap parameters_;
871  static ParametersMap parametersType_;
872  static ParametersMap descriptions_;
874 
875  static std::map<std::string, std::pair<bool, std::string> > removedParameters_;
876  static ParametersMap backwardCompatibilityMap_;
877 };
878 
879 }
880 
881 #endif /* PARAMETERS_H_ */
#define RTABMAP_PARAM_STR(PREFIX, NAME, DEFAULT_VALUE, DESCRIPTION)
Definition: Parameters.h:98
void serialize(const Eigen::Matrix< S, T, U > &mat, std::ostream &strm)
std::pair< std::string, std::string > ParametersPair
Definition: Parameters.h:44
std::map< std::string, std::string > ParametersMap
Definition: Parameters.h:43
static ParametersMap descriptions_
Definition: Parameters.h:872
static ParametersMap backwardCompatibilityMap_
Definition: Parameters.h:876
Some conversion functions.
void showUsage()
#define RTABMAP_EXP
Definition: RtabmapExp.h:38
Definition: sqlite3.c:10056
static Parameters instance_
Definition: Parameters.h:873
void NMS(const std::vector< cv::KeyPoint > &ptsIn, const cv::Mat &conf, const cv::Mat &descriptorsIn, std::vector< cv::KeyPoint > &ptsOut, cv::Mat &descriptorsOut, int border, int dist_thresh, int img_width, int img_height)
Definition: SuperPoint.cc:277
static ParametersMap parameters_
Definition: Parameters.h:870
Definition: sqlite3.c:13567
static const ParametersMap & getDefaultParameters()
Definition: Parameters.h:807
static ParametersMap parametersType_
Definition: Parameters.h:871
#define RTABMAP_PARAM(PREFIX, NAME, TYPE, DEFAULT_VALUE, DESCRIPTION)
Definition: Parameters.h:64
Length
std::string UTILITE_EXP uFormat(const char *fmt,...)
static std::map< std::string, std::pair< bool, std::string > > removedParameters_
Definition: Parameters.h:875
void deserialize(std::istream &strm, Eigen::Matrix< S, T, U > *mat)
void parse(std::istream &input)


rtabmap
Author(s): Mathieu Labbe
autogenerated on Mon Jan 23 2023 03:37:29