MaximumLikelihoodSampleConsensus represents an implementation of the MLESAC (Maximum Likelihood Estimator SAmple Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to estimating image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000. More...
#include <mlesac.h>
Public Member Functions | |
bool | computeModel (int debug_verbosity_level=0) |
Compute the actual model and find the inliers. | |
int | getEMIterations () const |
Get the number of EM iterations. | |
MaximumLikelihoodSampleConsensus (const SampleConsensusModelPtr &model) | |
MLESAC (Maximum Likelihood Estimator SAmple Consensus) main constructor. | |
MaximumLikelihoodSampleConsensus (const SampleConsensusModelPtr &model, double threshold) | |
MLESAC (Maximum Likelihood Estimator SAmple Consensus) main constructor. | |
void | setEMIterations (int iterations) |
Set the number of EM iterations. | |
Protected Member Functions | |
void | computeMedian (const PointCloudConstPtr &cloud, const boost::shared_ptr< std::vector< int > > &indices, Eigen::Vector4f &median) |
Compute the median value of a 3D point cloud using a given set point indices and return it as a Point32. | |
double | computeMedianAbsoluteDeviation (const PointCloudConstPtr &cloud, const boost::shared_ptr< std::vector< int > > &indices, double sigma) |
Compute the median absolute deviation:
| |
void | getMinMax (const PointCloudConstPtr &cloud, const boost::shared_ptr< std::vector< int > > &indices, Eigen::Vector4f &min_p, Eigen::Vector4f &max_p) |
Determine the minimum and maximum 3D bounding box coordinates for a given set of points. | |
Private Types | |
typedef SampleConsensusModel < PointT >::PointCloudConstPtr | PointCloudConstPtr |
typedef SampleConsensusModel < PointT >::Ptr | SampleConsensusModelPtr |
Private Attributes | |
int | iterations_EM_ |
Maximum number of EM (Expectation Maximization) iterations. | |
double | sigma_ |
The MLESAC sigma parameter. |
MaximumLikelihoodSampleConsensus represents an implementation of the MLESAC (Maximum Likelihood Estimator SAmple Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to estimating image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000.
typedef SampleConsensusModel<PointT>::PointCloudConstPtr pcl::MaximumLikelihoodSampleConsensus< PointT >::PointCloudConstPtr [private] |
typedef SampleConsensusModel<PointT>::Ptr pcl::MaximumLikelihoodSampleConsensus< PointT >::SampleConsensusModelPtr [private] |
Reimplemented from pcl::SampleConsensus< PointT >.
pcl::MaximumLikelihoodSampleConsensus< PointT >::MaximumLikelihoodSampleConsensus | ( | const SampleConsensusModelPtr & | model | ) | [inline] |
pcl::MaximumLikelihoodSampleConsensus< PointT >::MaximumLikelihoodSampleConsensus | ( | const SampleConsensusModelPtr & | model, |
double | threshold | ||
) | [inline] |
void pcl::MaximumLikelihoodSampleConsensus< PointT >::computeMedian | ( | const PointCloudConstPtr & | cloud, |
const boost::shared_ptr< std::vector< int > > & | indices, | ||
Eigen::Vector4f & | median | ||
) | [protected] |
Compute the median value of a 3D point cloud using a given set point indices and return it as a Point32.
[in] | cloud | the point cloud data message |
[in] | indices | the point indices |
[out] | median | the resultant median value |
Definition at line 253 of file mlesac.hpp.
double pcl::MaximumLikelihoodSampleConsensus< PointT >::computeMedianAbsoluteDeviation | ( | const PointCloudConstPtr & | cloud, |
const boost::shared_ptr< std::vector< int > > & | indices, | ||
double | sigma | ||
) | [protected] |
Compute the median absolute deviation:
.
[in] | cloud | the point cloud data message |
[in] | indices | the set of point indices to use |
[in] | sigma | the sigma value |
Definition at line 196 of file mlesac.hpp.
bool pcl::MaximumLikelihoodSampleConsensus< PointT >::computeModel | ( | int | debug_verbosity_level = 0 | ) | [virtual] |
Compute the actual model and find the inliers.
[in] | debug_verbosity_level | enable/disable on-screen debug information and set the verbosity level |
Implements pcl::SampleConsensus< PointT >.
Definition at line 45 of file mlesac.hpp.
int pcl::MaximumLikelihoodSampleConsensus< PointT >::getEMIterations | ( | ) | const [inline] |
void pcl::MaximumLikelihoodSampleConsensus< PointT >::getMinMax | ( | const PointCloudConstPtr & | cloud, |
const boost::shared_ptr< std::vector< int > > & | indices, | ||
Eigen::Vector4f & | min_p, | ||
Eigen::Vector4f & | max_p | ||
) | [protected] |
Determine the minimum and maximum 3D bounding box coordinates for a given set of points.
[in] | cloud | the point cloud message |
[in] | indices | the set of point indices to use |
[out] | min_p | the resultant minimum bounding box coordinates |
[out] | max_p | the resultant maximum bounding box coordinates |
Definition at line 229 of file mlesac.hpp.
void pcl::MaximumLikelihoodSampleConsensus< PointT >::setEMIterations | ( | int | iterations | ) | [inline] |
int pcl::MaximumLikelihoodSampleConsensus< PointT >::iterations_EM_ [private] |
double pcl::MaximumLikelihoodSampleConsensus< PointT >::sigma_ [private] |