, including all inherited members.
computeMedian(const PointCloudConstPtr &cloud, const boost::shared_ptr< std::vector< int > > &indices, Eigen::Vector4f &median) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [protected] |
computeMedianAbsoluteDeviation(const PointCloudConstPtr &cloud, const boost::shared_ptr< std::vector< int > > &indices, double sigma) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [protected] |
computeModel(int debug_verbosity_level=0) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [virtual] |
ConstPtr typedef | pcl::SampleConsensus< PointT > | |
getDistanceThreshold() | pcl::SampleConsensus< PointT > | [inline] |
getEMIterations() const | pcl::MaximumLikelihoodSampleConsensus< PointT > | [inline] |
getInliers(std::vector< int > &inliers) | pcl::SampleConsensus< PointT > | [inline] |
getMaxIterations() | pcl::SampleConsensus< PointT > | [inline] |
getMinMax(const PointCloudConstPtr &cloud, const boost::shared_ptr< std::vector< int > > &indices, Eigen::Vector4f &min_p, Eigen::Vector4f &max_p) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [protected] |
getModel(std::vector< int > &model) | pcl::SampleConsensus< PointT > | [inline] |
getModelCoefficients(Eigen::VectorXf &model_coefficients) | pcl::SampleConsensus< PointT > | [inline] |
getProbability() | pcl::SampleConsensus< PointT > | [inline] |
getRandomSamples(const boost::shared_ptr< std::vector< int > > &indices, size_t nr_samples, std::set< int > &indices_subset) | pcl::SampleConsensus< PointT > | [inline] |
inliers_ | pcl::SampleConsensus< PointT > | [protected] |
iterations_ | pcl::SampleConsensus< PointT > | [protected] |
iterations_EM_ | pcl::MaximumLikelihoodSampleConsensus< PointT > | [private] |
max_iterations_ | pcl::SampleConsensus< PointT > | [protected] |
MaximumLikelihoodSampleConsensus(const SampleConsensusModelPtr &model) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [inline] |
MaximumLikelihoodSampleConsensus(const SampleConsensusModelPtr &model, double threshold) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [inline] |
model_ | pcl::SampleConsensus< PointT > | [protected] |
model_coefficients_ | pcl::SampleConsensus< PointT > | [protected] |
PointCloudConstPtr typedef | pcl::MaximumLikelihoodSampleConsensus< PointT > | [private] |
probability_ | pcl::SampleConsensus< PointT > | [protected] |
Ptr typedef | pcl::SampleConsensus< PointT > | |
rnd() | pcl::SampleConsensus< PointT > | [inline, protected] |
rng_ | pcl::SampleConsensus< PointT > | [protected] |
rng_alg_ | pcl::SampleConsensus< PointT > | [protected] |
sac_model_ | pcl::SampleConsensus< PointT > | [protected] |
SampleConsensus(const SampleConsensusModelPtr &model, bool random=false) | pcl::SampleConsensus< PointT > | [inline] |
SampleConsensus(const SampleConsensusModelPtr &model, double threshold, bool random=false) | pcl::SampleConsensus< PointT > | [inline] |
SampleConsensusModelPtr typedef | pcl::MaximumLikelihoodSampleConsensus< PointT > | [private] |
setDistanceThreshold(double threshold) | pcl::SampleConsensus< PointT > | [inline] |
setEMIterations(int iterations) | pcl::MaximumLikelihoodSampleConsensus< PointT > | [inline] |
setMaxIterations(int max_iterations) | pcl::SampleConsensus< PointT > | [inline] |
setProbability(double probability) | pcl::SampleConsensus< PointT > | [inline] |
sigma_ | pcl::MaximumLikelihoodSampleConsensus< PointT > | [private] |
threshold_ | pcl::SampleConsensus< PointT > | [protected] |
~SampleConsensus() | pcl::SampleConsensus< PointT > | [inline, virtual] |