00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_GRASPPLANNING_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_GRASPPLANNING_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "object_manipulation_msgs/GraspableObject.h"
00020 #include "object_manipulation_msgs/Grasp.h"
00021 #include "object_manipulation_msgs/GraspableObject.h"
00022
00023
00024 #include "object_manipulation_msgs/Grasp.h"
00025 #include "object_manipulation_msgs/GraspPlanningErrorCode.h"
00026
00027 namespace object_manipulation_msgs
00028 {
00029 template <class ContainerAllocator>
00030 struct GraspPlanningRequest_ {
00031 typedef GraspPlanningRequest_<ContainerAllocator> Type;
00032
00033 GraspPlanningRequest_()
00034 : arm_name()
00035 , target()
00036 , collision_object_name()
00037 , collision_support_surface_name()
00038 , grasps_to_evaluate()
00039 , movable_obstacles()
00040 {
00041 }
00042
00043 GraspPlanningRequest_(const ContainerAllocator& _alloc)
00044 : arm_name(_alloc)
00045 , target(_alloc)
00046 , collision_object_name(_alloc)
00047 , collision_support_surface_name(_alloc)
00048 , grasps_to_evaluate(_alloc)
00049 , movable_obstacles(_alloc)
00050 {
00051 }
00052
00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00055
00056 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00057 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00058
00059 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00060 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00061
00062 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00063 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00064
00065 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_to_evaluate_type;
00066 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps_to_evaluate;
00067
00068 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type;
00069 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles;
00070
00071
00072 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > Ptr;
00073 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> const> ConstPtr;
00074 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00075 };
00076 typedef ::object_manipulation_msgs::GraspPlanningRequest_<std::allocator<void> > GraspPlanningRequest;
00077
00078 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest> GraspPlanningRequestPtr;
00079 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest const> GraspPlanningRequestConstPtr;
00080
00081
00082 template <class ContainerAllocator>
00083 struct GraspPlanningResponse_ {
00084 typedef GraspPlanningResponse_<ContainerAllocator> Type;
00085
00086 GraspPlanningResponse_()
00087 : grasps()
00088 , error_code()
00089 {
00090 }
00091
00092 GraspPlanningResponse_(const ContainerAllocator& _alloc)
00093 : grasps(_alloc)
00094 , error_code(_alloc)
00095 {
00096 }
00097
00098 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_type;
00099 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps;
00100
00101 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _error_code_type;
00102 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> error_code;
00103
00104
00105 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > Ptr;
00106 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> const> ConstPtr;
00107 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00108 };
00109 typedef ::object_manipulation_msgs::GraspPlanningResponse_<std::allocator<void> > GraspPlanningResponse;
00110
00111 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse> GraspPlanningResponsePtr;
00112 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse const> GraspPlanningResponseConstPtr;
00113
00114 struct GraspPlanning
00115 {
00116
00117 typedef GraspPlanningRequest Request;
00118 typedef GraspPlanningResponse Response;
00119 Request request;
00120 Response response;
00121
00122 typedef Request RequestType;
00123 typedef Response ResponseType;
00124 };
00125 }
00126
00127 namespace ros
00128 {
00129 namespace message_traits
00130 {
00131 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > : public TrueType {};
00132 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> const> : public TrueType {};
00133 template<class ContainerAllocator>
00134 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
00135 static const char* value()
00136 {
00137 return "5003fdf2225280c9d81c2bce4e645c20";
00138 }
00139
00140 static const char* value(const ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
00141 static const uint64_t static_value1 = 0x5003fdf2225280c9ULL;
00142 static const uint64_t static_value2 = 0xd81c2bce4e645c20ULL;
00143 };
00144
00145 template<class ContainerAllocator>
00146 struct DataType< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
00147 static const char* value()
00148 {
00149 return "object_manipulation_msgs/GraspPlanningRequest";
00150 }
00151
00152 static const char* value(const ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
00153 };
00154
00155 template<class ContainerAllocator>
00156 struct Definition< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
00157 static const char* value()
00158 {
00159 return "\n\
00160 \n\
00161 \n\
00162 \n\
00163 string arm_name\n\
00164 \n\
00165 \n\
00166 GraspableObject target\n\
00167 \n\
00168 \n\
00169 \n\
00170 string collision_object_name\n\
00171 \n\
00172 \n\
00173 \n\
00174 string collision_support_surface_name\n\
00175 \n\
00176 \n\
00177 Grasp[] grasps_to_evaluate\n\
00178 \n\
00179 \n\
00180 \n\
00181 GraspableObject[] movable_obstacles\n\
00182 \n\
00183 \n\
00184 ================================================================================\n\
00185 MSG: object_manipulation_msgs/GraspableObject\n\
00186 # an object that the object_manipulator can work on\n\
00187 \n\
00188 # a graspable object can be represented in multiple ways. This message\n\
00189 # can contain all of them. Which one is actually used is up to the receiver\n\
00190 # of this message. When adding new representations, one must be careful that\n\
00191 # they have reasonable lightweight defaults indicating that that particular\n\
00192 # representation is not available.\n\
00193 \n\
00194 # the tf frame to be used as a reference frame when combining information from\n\
00195 # the different representations below\n\
00196 string reference_frame_id\n\
00197 \n\
00198 # potential recognition results from a database of models\n\
00199 # all poses are relative to the object reference pose\n\
00200 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00201 \n\
00202 # the point cloud itself\n\
00203 sensor_msgs/PointCloud cluster\n\
00204 \n\
00205 # a region of a PointCloud2 of interest\n\
00206 object_manipulation_msgs/SceneRegion region\n\
00207 \n\
00208 # the name that this object has in the collision environment\n\
00209 string collision_name\n\
00210 ================================================================================\n\
00211 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00212 # Informs that a specific model from the Model Database has been \n\
00213 # identified at a certain location\n\
00214 \n\
00215 # the database id of the model\n\
00216 int32 model_id\n\
00217 \n\
00218 # the pose that it can be found in\n\
00219 geometry_msgs/PoseStamped pose\n\
00220 \n\
00221 # a measure of the confidence level in this detection result\n\
00222 float32 confidence\n\
00223 \n\
00224 # the name of the object detector that generated this detection result\n\
00225 string detector_name\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: geometry_msgs/PoseStamped\n\
00229 # A Pose with reference coordinate frame and timestamp\n\
00230 Header header\n\
00231 Pose pose\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: std_msgs/Header\n\
00235 # Standard metadata for higher-level stamped data types.\n\
00236 # This is generally used to communicate timestamped data \n\
00237 # in a particular coordinate frame.\n\
00238 # \n\
00239 # sequence ID: consecutively increasing ID \n\
00240 uint32 seq\n\
00241 #Two-integer timestamp that is expressed as:\n\
00242 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00243 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00244 # time-handling sugar is provided by the client library\n\
00245 time stamp\n\
00246 #Frame this data is associated with\n\
00247 # 0: no frame\n\
00248 # 1: global frame\n\
00249 string frame_id\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/Pose\n\
00253 # A representation of pose in free space, composed of postion and orientation. \n\
00254 Point position\n\
00255 Quaternion orientation\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Point\n\
00259 # This contains the position of a point in free space\n\
00260 float64 x\n\
00261 float64 y\n\
00262 float64 z\n\
00263 \n\
00264 ================================================================================\n\
00265 MSG: geometry_msgs/Quaternion\n\
00266 # This represents an orientation in free space in quaternion form.\n\
00267 \n\
00268 float64 x\n\
00269 float64 y\n\
00270 float64 z\n\
00271 float64 w\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/PointCloud\n\
00275 # This message holds a collection of 3d points, plus optional additional\n\
00276 # information about each point.\n\
00277 \n\
00278 # Time of sensor data acquisition, coordinate frame ID.\n\
00279 Header header\n\
00280 \n\
00281 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00282 # in the frame given in the header.\n\
00283 geometry_msgs/Point32[] points\n\
00284 \n\
00285 # Each channel should have the same number of elements as points array,\n\
00286 # and the data in each channel should correspond 1:1 with each point.\n\
00287 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00288 ChannelFloat32[] channels\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: geometry_msgs/Point32\n\
00292 # This contains the position of a point in free space(with 32 bits of precision).\n\
00293 # It is recommeded to use Point wherever possible instead of Point32. \n\
00294 # \n\
00295 # This recommendation is to promote interoperability. \n\
00296 #\n\
00297 # This message is designed to take up less space when sending\n\
00298 # lots of points at once, as in the case of a PointCloud. \n\
00299 \n\
00300 float32 x\n\
00301 float32 y\n\
00302 float32 z\n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/ChannelFloat32\n\
00305 # This message is used by the PointCloud message to hold optional data\n\
00306 # associated with each point in the cloud. The length of the values\n\
00307 # array should be the same as the length of the points array in the\n\
00308 # PointCloud, and each value should be associated with the corresponding\n\
00309 # point.\n\
00310 \n\
00311 # Channel names in existing practice include:\n\
00312 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00313 # This is opposite to usual conventions but remains for\n\
00314 # historical reasons. The newer PointCloud2 message has no\n\
00315 # such problem.\n\
00316 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00317 # (R,G,B) values packed into the least significant 24 bits,\n\
00318 # in order.\n\
00319 # \"intensity\" - laser or pixel intensity.\n\
00320 # \"distance\"\n\
00321 \n\
00322 # The channel name should give semantics of the channel (e.g.\n\
00323 # \"intensity\" instead of \"value\").\n\
00324 string name\n\
00325 \n\
00326 # The values array should be 1-1 with the elements of the associated\n\
00327 # PointCloud.\n\
00328 float32[] values\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: object_manipulation_msgs/SceneRegion\n\
00332 # Point cloud\n\
00333 sensor_msgs/PointCloud2 cloud\n\
00334 \n\
00335 # Indices for the region of interest\n\
00336 int32[] mask\n\
00337 \n\
00338 # One of the corresponding 2D images, if applicable\n\
00339 sensor_msgs/Image image\n\
00340 \n\
00341 # The disparity image, if applicable\n\
00342 sensor_msgs/Image disparity_image\n\
00343 \n\
00344 # Camera info for the camera that took the image\n\
00345 sensor_msgs/CameraInfo cam_info\n\
00346 \n\
00347 # a 3D region of interest for grasp planning\n\
00348 geometry_msgs/PoseStamped roi_box_pose\n\
00349 geometry_msgs/Vector3 roi_box_dims\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: sensor_msgs/PointCloud2\n\
00353 # This message holds a collection of N-dimensional points, which may\n\
00354 # contain additional information such as normals, intensity, etc. The\n\
00355 # point data is stored as a binary blob, its layout described by the\n\
00356 # contents of the \"fields\" array.\n\
00357 \n\
00358 # The point cloud data may be organized 2d (image-like) or 1d\n\
00359 # (unordered). Point clouds organized as 2d images may be produced by\n\
00360 # camera depth sensors such as stereo or time-of-flight.\n\
00361 \n\
00362 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00363 # points).\n\
00364 Header header\n\
00365 \n\
00366 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00367 # 1 and width is the length of the point cloud.\n\
00368 uint32 height\n\
00369 uint32 width\n\
00370 \n\
00371 # Describes the channels and their layout in the binary data blob.\n\
00372 PointField[] fields\n\
00373 \n\
00374 bool is_bigendian # Is this data bigendian?\n\
00375 uint32 point_step # Length of a point in bytes\n\
00376 uint32 row_step # Length of a row in bytes\n\
00377 uint8[] data # Actual point data, size is (row_step*height)\n\
00378 \n\
00379 bool is_dense # True if there are no invalid points\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: sensor_msgs/PointField\n\
00383 # This message holds the description of one point entry in the\n\
00384 # PointCloud2 message format.\n\
00385 uint8 INT8 = 1\n\
00386 uint8 UINT8 = 2\n\
00387 uint8 INT16 = 3\n\
00388 uint8 UINT16 = 4\n\
00389 uint8 INT32 = 5\n\
00390 uint8 UINT32 = 6\n\
00391 uint8 FLOAT32 = 7\n\
00392 uint8 FLOAT64 = 8\n\
00393 \n\
00394 string name # Name of field\n\
00395 uint32 offset # Offset from start of point struct\n\
00396 uint8 datatype # Datatype enumeration, see above\n\
00397 uint32 count # How many elements in the field\n\
00398 \n\
00399 ================================================================================\n\
00400 MSG: sensor_msgs/Image\n\
00401 # This message contains an uncompressed image\n\
00402 # (0, 0) is at top-left corner of image\n\
00403 #\n\
00404 \n\
00405 Header header # Header timestamp should be acquisition time of image\n\
00406 # Header frame_id should be optical frame of camera\n\
00407 # origin of frame should be optical center of cameara\n\
00408 # +x should point to the right in the image\n\
00409 # +y should point down in the image\n\
00410 # +z should point into to plane of the image\n\
00411 # If the frame_id here and the frame_id of the CameraInfo\n\
00412 # message associated with the image conflict\n\
00413 # the behavior is undefined\n\
00414 \n\
00415 uint32 height # image height, that is, number of rows\n\
00416 uint32 width # image width, that is, number of columns\n\
00417 \n\
00418 # The legal values for encoding are in file src/image_encodings.cpp\n\
00419 # If you want to standardize a new string format, join\n\
00420 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00421 \n\
00422 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00423 # taken from the list of strings in src/image_encodings.cpp\n\
00424 \n\
00425 uint8 is_bigendian # is this data bigendian?\n\
00426 uint32 step # Full row length in bytes\n\
00427 uint8[] data # actual matrix data, size is (step * rows)\n\
00428 \n\
00429 ================================================================================\n\
00430 MSG: sensor_msgs/CameraInfo\n\
00431 # This message defines meta information for a camera. It should be in a\n\
00432 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00433 # image topics named:\n\
00434 #\n\
00435 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00436 # image - monochrome, distorted\n\
00437 # image_color - color, distorted\n\
00438 # image_rect - monochrome, rectified\n\
00439 # image_rect_color - color, rectified\n\
00440 #\n\
00441 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00442 # for producing the four processed image topics from image_raw and\n\
00443 # camera_info. The meaning of the camera parameters are described in\n\
00444 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00445 #\n\
00446 # The image_geometry package provides a user-friendly interface to\n\
00447 # common operations using this meta information. If you want to, e.g.,\n\
00448 # project a 3d point into image coordinates, we strongly recommend\n\
00449 # using image_geometry.\n\
00450 #\n\
00451 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00452 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00453 # indicates an uncalibrated camera.\n\
00454 \n\
00455 #######################################################################\n\
00456 # Image acquisition info #\n\
00457 #######################################################################\n\
00458 \n\
00459 # Time of image acquisition, camera coordinate frame ID\n\
00460 Header header # Header timestamp should be acquisition time of image\n\
00461 # Header frame_id should be optical frame of camera\n\
00462 # origin of frame should be optical center of camera\n\
00463 # +x should point to the right in the image\n\
00464 # +y should point down in the image\n\
00465 # +z should point into the plane of the image\n\
00466 \n\
00467 \n\
00468 #######################################################################\n\
00469 # Calibration Parameters #\n\
00470 #######################################################################\n\
00471 # These are fixed during camera calibration. Their values will be the #\n\
00472 # same in all messages until the camera is recalibrated. Note that #\n\
00473 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00474 # #\n\
00475 # The internal parameters can be used to warp a raw (distorted) image #\n\
00476 # to: #\n\
00477 # 1. An undistorted image (requires D and K) #\n\
00478 # 2. A rectified image (requires D, K, R) #\n\
00479 # The projection matrix P projects 3D points into the rectified image.#\n\
00480 #######################################################################\n\
00481 \n\
00482 # The image dimensions with which the camera was calibrated. Normally\n\
00483 # this will be the full camera resolution in pixels.\n\
00484 uint32 height\n\
00485 uint32 width\n\
00486 \n\
00487 # The distortion model used. Supported models are listed in\n\
00488 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00489 # simple model of radial and tangential distortion - is sufficent.\n\
00490 string distortion_model\n\
00491 \n\
00492 # The distortion parameters, size depending on the distortion model.\n\
00493 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00494 float64[] D\n\
00495 \n\
00496 # Intrinsic camera matrix for the raw (distorted) images.\n\
00497 # [fx 0 cx]\n\
00498 # K = [ 0 fy cy]\n\
00499 # [ 0 0 1]\n\
00500 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00501 # coordinates using the focal lengths (fx, fy) and principal point\n\
00502 # (cx, cy).\n\
00503 float64[9] K # 3x3 row-major matrix\n\
00504 \n\
00505 # Rectification matrix (stereo cameras only)\n\
00506 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00507 # stereo image plane so that epipolar lines in both stereo images are\n\
00508 # parallel.\n\
00509 float64[9] R # 3x3 row-major matrix\n\
00510 \n\
00511 # Projection/camera matrix\n\
00512 # [fx' 0 cx' Tx]\n\
00513 # P = [ 0 fy' cy' Ty]\n\
00514 # [ 0 0 1 0]\n\
00515 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00516 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00517 # is the normal camera intrinsic matrix for the rectified image.\n\
00518 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00519 # coordinates using the focal lengths (fx', fy') and principal point\n\
00520 # (cx', cy') - these may differ from the values in K.\n\
00521 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00522 # also have R = the identity and P[1:3,1:3] = K.\n\
00523 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00524 # position of the optical center of the second camera in the first\n\
00525 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00526 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00527 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00528 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00529 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00530 # the rectified image is given by:\n\
00531 # [u v w]' = P * [X Y Z 1]'\n\
00532 # x = u / w\n\
00533 # y = v / w\n\
00534 # This holds for both images of a stereo pair.\n\
00535 float64[12] P # 3x4 row-major matrix\n\
00536 \n\
00537 \n\
00538 #######################################################################\n\
00539 # Operational Parameters #\n\
00540 #######################################################################\n\
00541 # These define the image region actually captured by the camera #\n\
00542 # driver. Although they affect the geometry of the output image, they #\n\
00543 # may be changed freely without recalibrating the camera. #\n\
00544 #######################################################################\n\
00545 \n\
00546 # Binning refers here to any camera setting which combines rectangular\n\
00547 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00548 # resolution of the output image to\n\
00549 # (width / binning_x) x (height / binning_y).\n\
00550 # The default values binning_x = binning_y = 0 is considered the same\n\
00551 # as binning_x = binning_y = 1 (no subsampling).\n\
00552 uint32 binning_x\n\
00553 uint32 binning_y\n\
00554 \n\
00555 # Region of interest (subwindow of full camera resolution), given in\n\
00556 # full resolution (unbinned) image coordinates. A particular ROI\n\
00557 # always denotes the same window of pixels on the camera sensor,\n\
00558 # regardless of binning settings.\n\
00559 # The default setting of roi (all values 0) is considered the same as\n\
00560 # full resolution (roi.width = width, roi.height = height).\n\
00561 RegionOfInterest roi\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: sensor_msgs/RegionOfInterest\n\
00565 # This message is used to specify a region of interest within an image.\n\
00566 #\n\
00567 # When used to specify the ROI setting of the camera when the image was\n\
00568 # taken, the height and width fields should either match the height and\n\
00569 # width fields for the associated image; or height = width = 0\n\
00570 # indicates that the full resolution image was captured.\n\
00571 \n\
00572 uint32 x_offset # Leftmost pixel of the ROI\n\
00573 # (0 if the ROI includes the left edge of the image)\n\
00574 uint32 y_offset # Topmost pixel of the ROI\n\
00575 # (0 if the ROI includes the top edge of the image)\n\
00576 uint32 height # Height of ROI\n\
00577 uint32 width # Width of ROI\n\
00578 \n\
00579 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00580 # ROI in this message. Typically this should be False if the full image\n\
00581 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00582 # used).\n\
00583 bool do_rectify\n\
00584 \n\
00585 ================================================================================\n\
00586 MSG: geometry_msgs/Vector3\n\
00587 # This represents a vector in free space. \n\
00588 \n\
00589 float64 x\n\
00590 float64 y\n\
00591 float64 z\n\
00592 ================================================================================\n\
00593 MSG: object_manipulation_msgs/Grasp\n\
00594 \n\
00595 # The internal posture of the hand for the pre-grasp\n\
00596 # only positions are used\n\
00597 sensor_msgs/JointState pre_grasp_posture\n\
00598 \n\
00599 # The internal posture of the hand for the grasp\n\
00600 # positions and efforts are used\n\
00601 sensor_msgs/JointState grasp_posture\n\
00602 \n\
00603 # The position of the end-effector for the grasp relative to a reference frame \n\
00604 # (that is always specified elsewhere, not in this message)\n\
00605 geometry_msgs/Pose grasp_pose\n\
00606 \n\
00607 # The estimated probability of success for this grasp\n\
00608 float64 success_probability\n\
00609 \n\
00610 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00611 bool cluster_rep\n\
00612 \n\
00613 # how far the pre-grasp should ideally be away from the grasp\n\
00614 float32 desired_approach_distance\n\
00615 \n\
00616 # how much distance between pre-grasp and grasp must actually be feasible \n\
00617 # for the grasp not to be rejected\n\
00618 float32 min_approach_distance\n\
00619 \n\
00620 # an optional list of obstacles that we have semantic information about\n\
00621 # and that we expect might move in the course of executing this grasp\n\
00622 # the grasp planner is expected to make sure they move in an OK way; during\n\
00623 # execution, grasp executors will not check for collisions against these objects\n\
00624 GraspableObject[] moved_obstacles\n\
00625 \n\
00626 ================================================================================\n\
00627 MSG: sensor_msgs/JointState\n\
00628 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00629 #\n\
00630 # The state of each joint (revolute or prismatic) is defined by:\n\
00631 # * the position of the joint (rad or m),\n\
00632 # * the velocity of the joint (rad/s or m/s) and \n\
00633 # * the effort that is applied in the joint (Nm or N).\n\
00634 #\n\
00635 # Each joint is uniquely identified by its name\n\
00636 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00637 # in one message have to be recorded at the same time.\n\
00638 #\n\
00639 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00640 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00641 # effort associated with them, you can leave the effort array empty. \n\
00642 #\n\
00643 # All arrays in this message should have the same size, or be empty.\n\
00644 # This is the only way to uniquely associate the joint name with the correct\n\
00645 # states.\n\
00646 \n\
00647 \n\
00648 Header header\n\
00649 \n\
00650 string[] name\n\
00651 float64[] position\n\
00652 float64[] velocity\n\
00653 float64[] effort\n\
00654 \n\
00655 ";
00656 }
00657
00658 static const char* value(const ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
00659 };
00660
00661 }
00662 }
00663
00664
00665 namespace ros
00666 {
00667 namespace message_traits
00668 {
00669 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > : public TrueType {};
00670 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> const> : public TrueType {};
00671 template<class ContainerAllocator>
00672 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
00673 static const char* value()
00674 {
00675 return "998e3d06c509abfc46d7fdf96fe1c188";
00676 }
00677
00678 static const char* value(const ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
00679 static const uint64_t static_value1 = 0x998e3d06c509abfcULL;
00680 static const uint64_t static_value2 = 0x46d7fdf96fe1c188ULL;
00681 };
00682
00683 template<class ContainerAllocator>
00684 struct DataType< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
00685 static const char* value()
00686 {
00687 return "object_manipulation_msgs/GraspPlanningResponse";
00688 }
00689
00690 static const char* value(const ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
00691 };
00692
00693 template<class ContainerAllocator>
00694 struct Definition< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
00695 static const char* value()
00696 {
00697 return "\n\
00698 \n\
00699 Grasp[] grasps\n\
00700 \n\
00701 \n\
00702 GraspPlanningErrorCode error_code\n\
00703 \n\
00704 \n\
00705 ================================================================================\n\
00706 MSG: object_manipulation_msgs/Grasp\n\
00707 \n\
00708 # The internal posture of the hand for the pre-grasp\n\
00709 # only positions are used\n\
00710 sensor_msgs/JointState pre_grasp_posture\n\
00711 \n\
00712 # The internal posture of the hand for the grasp\n\
00713 # positions and efforts are used\n\
00714 sensor_msgs/JointState grasp_posture\n\
00715 \n\
00716 # The position of the end-effector for the grasp relative to a reference frame \n\
00717 # (that is always specified elsewhere, not in this message)\n\
00718 geometry_msgs/Pose grasp_pose\n\
00719 \n\
00720 # The estimated probability of success for this grasp\n\
00721 float64 success_probability\n\
00722 \n\
00723 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00724 bool cluster_rep\n\
00725 \n\
00726 # how far the pre-grasp should ideally be away from the grasp\n\
00727 float32 desired_approach_distance\n\
00728 \n\
00729 # how much distance between pre-grasp and grasp must actually be feasible \n\
00730 # for the grasp not to be rejected\n\
00731 float32 min_approach_distance\n\
00732 \n\
00733 # an optional list of obstacles that we have semantic information about\n\
00734 # and that we expect might move in the course of executing this grasp\n\
00735 # the grasp planner is expected to make sure they move in an OK way; during\n\
00736 # execution, grasp executors will not check for collisions against these objects\n\
00737 GraspableObject[] moved_obstacles\n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: sensor_msgs/JointState\n\
00741 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00742 #\n\
00743 # The state of each joint (revolute or prismatic) is defined by:\n\
00744 # * the position of the joint (rad or m),\n\
00745 # * the velocity of the joint (rad/s or m/s) and \n\
00746 # * the effort that is applied in the joint (Nm or N).\n\
00747 #\n\
00748 # Each joint is uniquely identified by its name\n\
00749 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00750 # in one message have to be recorded at the same time.\n\
00751 #\n\
00752 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00753 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00754 # effort associated with them, you can leave the effort array empty. \n\
00755 #\n\
00756 # All arrays in this message should have the same size, or be empty.\n\
00757 # This is the only way to uniquely associate the joint name with the correct\n\
00758 # states.\n\
00759 \n\
00760 \n\
00761 Header header\n\
00762 \n\
00763 string[] name\n\
00764 float64[] position\n\
00765 float64[] velocity\n\
00766 float64[] effort\n\
00767 \n\
00768 ================================================================================\n\
00769 MSG: std_msgs/Header\n\
00770 # Standard metadata for higher-level stamped data types.\n\
00771 # This is generally used to communicate timestamped data \n\
00772 # in a particular coordinate frame.\n\
00773 # \n\
00774 # sequence ID: consecutively increasing ID \n\
00775 uint32 seq\n\
00776 #Two-integer timestamp that is expressed as:\n\
00777 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00778 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00779 # time-handling sugar is provided by the client library\n\
00780 time stamp\n\
00781 #Frame this data is associated with\n\
00782 # 0: no frame\n\
00783 # 1: global frame\n\
00784 string frame_id\n\
00785 \n\
00786 ================================================================================\n\
00787 MSG: geometry_msgs/Pose\n\
00788 # A representation of pose in free space, composed of postion and orientation. \n\
00789 Point position\n\
00790 Quaternion orientation\n\
00791 \n\
00792 ================================================================================\n\
00793 MSG: geometry_msgs/Point\n\
00794 # This contains the position of a point in free space\n\
00795 float64 x\n\
00796 float64 y\n\
00797 float64 z\n\
00798 \n\
00799 ================================================================================\n\
00800 MSG: geometry_msgs/Quaternion\n\
00801 # This represents an orientation in free space in quaternion form.\n\
00802 \n\
00803 float64 x\n\
00804 float64 y\n\
00805 float64 z\n\
00806 float64 w\n\
00807 \n\
00808 ================================================================================\n\
00809 MSG: object_manipulation_msgs/GraspableObject\n\
00810 # an object that the object_manipulator can work on\n\
00811 \n\
00812 # a graspable object can be represented in multiple ways. This message\n\
00813 # can contain all of them. Which one is actually used is up to the receiver\n\
00814 # of this message. When adding new representations, one must be careful that\n\
00815 # they have reasonable lightweight defaults indicating that that particular\n\
00816 # representation is not available.\n\
00817 \n\
00818 # the tf frame to be used as a reference frame when combining information from\n\
00819 # the different representations below\n\
00820 string reference_frame_id\n\
00821 \n\
00822 # potential recognition results from a database of models\n\
00823 # all poses are relative to the object reference pose\n\
00824 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00825 \n\
00826 # the point cloud itself\n\
00827 sensor_msgs/PointCloud cluster\n\
00828 \n\
00829 # a region of a PointCloud2 of interest\n\
00830 object_manipulation_msgs/SceneRegion region\n\
00831 \n\
00832 # the name that this object has in the collision environment\n\
00833 string collision_name\n\
00834 ================================================================================\n\
00835 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00836 # Informs that a specific model from the Model Database has been \n\
00837 # identified at a certain location\n\
00838 \n\
00839 # the database id of the model\n\
00840 int32 model_id\n\
00841 \n\
00842 # the pose that it can be found in\n\
00843 geometry_msgs/PoseStamped pose\n\
00844 \n\
00845 # a measure of the confidence level in this detection result\n\
00846 float32 confidence\n\
00847 \n\
00848 # the name of the object detector that generated this detection result\n\
00849 string detector_name\n\
00850 \n\
00851 ================================================================================\n\
00852 MSG: geometry_msgs/PoseStamped\n\
00853 # A Pose with reference coordinate frame and timestamp\n\
00854 Header header\n\
00855 Pose pose\n\
00856 \n\
00857 ================================================================================\n\
00858 MSG: sensor_msgs/PointCloud\n\
00859 # This message holds a collection of 3d points, plus optional additional\n\
00860 # information about each point.\n\
00861 \n\
00862 # Time of sensor data acquisition, coordinate frame ID.\n\
00863 Header header\n\
00864 \n\
00865 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00866 # in the frame given in the header.\n\
00867 geometry_msgs/Point32[] points\n\
00868 \n\
00869 # Each channel should have the same number of elements as points array,\n\
00870 # and the data in each channel should correspond 1:1 with each point.\n\
00871 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00872 ChannelFloat32[] channels\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: geometry_msgs/Point32\n\
00876 # This contains the position of a point in free space(with 32 bits of precision).\n\
00877 # It is recommeded to use Point wherever possible instead of Point32. \n\
00878 # \n\
00879 # This recommendation is to promote interoperability. \n\
00880 #\n\
00881 # This message is designed to take up less space when sending\n\
00882 # lots of points at once, as in the case of a PointCloud. \n\
00883 \n\
00884 float32 x\n\
00885 float32 y\n\
00886 float32 z\n\
00887 ================================================================================\n\
00888 MSG: sensor_msgs/ChannelFloat32\n\
00889 # This message is used by the PointCloud message to hold optional data\n\
00890 # associated with each point in the cloud. The length of the values\n\
00891 # array should be the same as the length of the points array in the\n\
00892 # PointCloud, and each value should be associated with the corresponding\n\
00893 # point.\n\
00894 \n\
00895 # Channel names in existing practice include:\n\
00896 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00897 # This is opposite to usual conventions but remains for\n\
00898 # historical reasons. The newer PointCloud2 message has no\n\
00899 # such problem.\n\
00900 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00901 # (R,G,B) values packed into the least significant 24 bits,\n\
00902 # in order.\n\
00903 # \"intensity\" - laser or pixel intensity.\n\
00904 # \"distance\"\n\
00905 \n\
00906 # The channel name should give semantics of the channel (e.g.\n\
00907 # \"intensity\" instead of \"value\").\n\
00908 string name\n\
00909 \n\
00910 # The values array should be 1-1 with the elements of the associated\n\
00911 # PointCloud.\n\
00912 float32[] values\n\
00913 \n\
00914 ================================================================================\n\
00915 MSG: object_manipulation_msgs/SceneRegion\n\
00916 # Point cloud\n\
00917 sensor_msgs/PointCloud2 cloud\n\
00918 \n\
00919 # Indices for the region of interest\n\
00920 int32[] mask\n\
00921 \n\
00922 # One of the corresponding 2D images, if applicable\n\
00923 sensor_msgs/Image image\n\
00924 \n\
00925 # The disparity image, if applicable\n\
00926 sensor_msgs/Image disparity_image\n\
00927 \n\
00928 # Camera info for the camera that took the image\n\
00929 sensor_msgs/CameraInfo cam_info\n\
00930 \n\
00931 # a 3D region of interest for grasp planning\n\
00932 geometry_msgs/PoseStamped roi_box_pose\n\
00933 geometry_msgs/Vector3 roi_box_dims\n\
00934 \n\
00935 ================================================================================\n\
00936 MSG: sensor_msgs/PointCloud2\n\
00937 # This message holds a collection of N-dimensional points, which may\n\
00938 # contain additional information such as normals, intensity, etc. The\n\
00939 # point data is stored as a binary blob, its layout described by the\n\
00940 # contents of the \"fields\" array.\n\
00941 \n\
00942 # The point cloud data may be organized 2d (image-like) or 1d\n\
00943 # (unordered). Point clouds organized as 2d images may be produced by\n\
00944 # camera depth sensors such as stereo or time-of-flight.\n\
00945 \n\
00946 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00947 # points).\n\
00948 Header header\n\
00949 \n\
00950 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00951 # 1 and width is the length of the point cloud.\n\
00952 uint32 height\n\
00953 uint32 width\n\
00954 \n\
00955 # Describes the channels and their layout in the binary data blob.\n\
00956 PointField[] fields\n\
00957 \n\
00958 bool is_bigendian # Is this data bigendian?\n\
00959 uint32 point_step # Length of a point in bytes\n\
00960 uint32 row_step # Length of a row in bytes\n\
00961 uint8[] data # Actual point data, size is (row_step*height)\n\
00962 \n\
00963 bool is_dense # True if there are no invalid points\n\
00964 \n\
00965 ================================================================================\n\
00966 MSG: sensor_msgs/PointField\n\
00967 # This message holds the description of one point entry in the\n\
00968 # PointCloud2 message format.\n\
00969 uint8 INT8 = 1\n\
00970 uint8 UINT8 = 2\n\
00971 uint8 INT16 = 3\n\
00972 uint8 UINT16 = 4\n\
00973 uint8 INT32 = 5\n\
00974 uint8 UINT32 = 6\n\
00975 uint8 FLOAT32 = 7\n\
00976 uint8 FLOAT64 = 8\n\
00977 \n\
00978 string name # Name of field\n\
00979 uint32 offset # Offset from start of point struct\n\
00980 uint8 datatype # Datatype enumeration, see above\n\
00981 uint32 count # How many elements in the field\n\
00982 \n\
00983 ================================================================================\n\
00984 MSG: sensor_msgs/Image\n\
00985 # This message contains an uncompressed image\n\
00986 # (0, 0) is at top-left corner of image\n\
00987 #\n\
00988 \n\
00989 Header header # Header timestamp should be acquisition time of image\n\
00990 # Header frame_id should be optical frame of camera\n\
00991 # origin of frame should be optical center of cameara\n\
00992 # +x should point to the right in the image\n\
00993 # +y should point down in the image\n\
00994 # +z should point into to plane of the image\n\
00995 # If the frame_id here and the frame_id of the CameraInfo\n\
00996 # message associated with the image conflict\n\
00997 # the behavior is undefined\n\
00998 \n\
00999 uint32 height # image height, that is, number of rows\n\
01000 uint32 width # image width, that is, number of columns\n\
01001 \n\
01002 # The legal values for encoding are in file src/image_encodings.cpp\n\
01003 # If you want to standardize a new string format, join\n\
01004 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01005 \n\
01006 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01007 # taken from the list of strings in src/image_encodings.cpp\n\
01008 \n\
01009 uint8 is_bigendian # is this data bigendian?\n\
01010 uint32 step # Full row length in bytes\n\
01011 uint8[] data # actual matrix data, size is (step * rows)\n\
01012 \n\
01013 ================================================================================\n\
01014 MSG: sensor_msgs/CameraInfo\n\
01015 # This message defines meta information for a camera. It should be in a\n\
01016 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01017 # image topics named:\n\
01018 #\n\
01019 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01020 # image - monochrome, distorted\n\
01021 # image_color - color, distorted\n\
01022 # image_rect - monochrome, rectified\n\
01023 # image_rect_color - color, rectified\n\
01024 #\n\
01025 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01026 # for producing the four processed image topics from image_raw and\n\
01027 # camera_info. The meaning of the camera parameters are described in\n\
01028 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01029 #\n\
01030 # The image_geometry package provides a user-friendly interface to\n\
01031 # common operations using this meta information. If you want to, e.g.,\n\
01032 # project a 3d point into image coordinates, we strongly recommend\n\
01033 # using image_geometry.\n\
01034 #\n\
01035 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01036 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01037 # indicates an uncalibrated camera.\n\
01038 \n\
01039 #######################################################################\n\
01040 # Image acquisition info #\n\
01041 #######################################################################\n\
01042 \n\
01043 # Time of image acquisition, camera coordinate frame ID\n\
01044 Header header # Header timestamp should be acquisition time of image\n\
01045 # Header frame_id should be optical frame of camera\n\
01046 # origin of frame should be optical center of camera\n\
01047 # +x should point to the right in the image\n\
01048 # +y should point down in the image\n\
01049 # +z should point into the plane of the image\n\
01050 \n\
01051 \n\
01052 #######################################################################\n\
01053 # Calibration Parameters #\n\
01054 #######################################################################\n\
01055 # These are fixed during camera calibration. Their values will be the #\n\
01056 # same in all messages until the camera is recalibrated. Note that #\n\
01057 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01058 # #\n\
01059 # The internal parameters can be used to warp a raw (distorted) image #\n\
01060 # to: #\n\
01061 # 1. An undistorted image (requires D and K) #\n\
01062 # 2. A rectified image (requires D, K, R) #\n\
01063 # The projection matrix P projects 3D points into the rectified image.#\n\
01064 #######################################################################\n\
01065 \n\
01066 # The image dimensions with which the camera was calibrated. Normally\n\
01067 # this will be the full camera resolution in pixels.\n\
01068 uint32 height\n\
01069 uint32 width\n\
01070 \n\
01071 # The distortion model used. Supported models are listed in\n\
01072 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01073 # simple model of radial and tangential distortion - is sufficent.\n\
01074 string distortion_model\n\
01075 \n\
01076 # The distortion parameters, size depending on the distortion model.\n\
01077 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01078 float64[] D\n\
01079 \n\
01080 # Intrinsic camera matrix for the raw (distorted) images.\n\
01081 # [fx 0 cx]\n\
01082 # K = [ 0 fy cy]\n\
01083 # [ 0 0 1]\n\
01084 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01085 # coordinates using the focal lengths (fx, fy) and principal point\n\
01086 # (cx, cy).\n\
01087 float64[9] K # 3x3 row-major matrix\n\
01088 \n\
01089 # Rectification matrix (stereo cameras only)\n\
01090 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01091 # stereo image plane so that epipolar lines in both stereo images are\n\
01092 # parallel.\n\
01093 float64[9] R # 3x3 row-major matrix\n\
01094 \n\
01095 # Projection/camera matrix\n\
01096 # [fx' 0 cx' Tx]\n\
01097 # P = [ 0 fy' cy' Ty]\n\
01098 # [ 0 0 1 0]\n\
01099 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01100 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01101 # is the normal camera intrinsic matrix for the rectified image.\n\
01102 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01103 # coordinates using the focal lengths (fx', fy') and principal point\n\
01104 # (cx', cy') - these may differ from the values in K.\n\
01105 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01106 # also have R = the identity and P[1:3,1:3] = K.\n\
01107 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01108 # position of the optical center of the second camera in the first\n\
01109 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01110 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01111 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01112 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01113 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01114 # the rectified image is given by:\n\
01115 # [u v w]' = P * [X Y Z 1]'\n\
01116 # x = u / w\n\
01117 # y = v / w\n\
01118 # This holds for both images of a stereo pair.\n\
01119 float64[12] P # 3x4 row-major matrix\n\
01120 \n\
01121 \n\
01122 #######################################################################\n\
01123 # Operational Parameters #\n\
01124 #######################################################################\n\
01125 # These define the image region actually captured by the camera #\n\
01126 # driver. Although they affect the geometry of the output image, they #\n\
01127 # may be changed freely without recalibrating the camera. #\n\
01128 #######################################################################\n\
01129 \n\
01130 # Binning refers here to any camera setting which combines rectangular\n\
01131 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01132 # resolution of the output image to\n\
01133 # (width / binning_x) x (height / binning_y).\n\
01134 # The default values binning_x = binning_y = 0 is considered the same\n\
01135 # as binning_x = binning_y = 1 (no subsampling).\n\
01136 uint32 binning_x\n\
01137 uint32 binning_y\n\
01138 \n\
01139 # Region of interest (subwindow of full camera resolution), given in\n\
01140 # full resolution (unbinned) image coordinates. A particular ROI\n\
01141 # always denotes the same window of pixels on the camera sensor,\n\
01142 # regardless of binning settings.\n\
01143 # The default setting of roi (all values 0) is considered the same as\n\
01144 # full resolution (roi.width = width, roi.height = height).\n\
01145 RegionOfInterest roi\n\
01146 \n\
01147 ================================================================================\n\
01148 MSG: sensor_msgs/RegionOfInterest\n\
01149 # This message is used to specify a region of interest within an image.\n\
01150 #\n\
01151 # When used to specify the ROI setting of the camera when the image was\n\
01152 # taken, the height and width fields should either match the height and\n\
01153 # width fields for the associated image; or height = width = 0\n\
01154 # indicates that the full resolution image was captured.\n\
01155 \n\
01156 uint32 x_offset # Leftmost pixel of the ROI\n\
01157 # (0 if the ROI includes the left edge of the image)\n\
01158 uint32 y_offset # Topmost pixel of the ROI\n\
01159 # (0 if the ROI includes the top edge of the image)\n\
01160 uint32 height # Height of ROI\n\
01161 uint32 width # Width of ROI\n\
01162 \n\
01163 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01164 # ROI in this message. Typically this should be False if the full image\n\
01165 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01166 # used).\n\
01167 bool do_rectify\n\
01168 \n\
01169 ================================================================================\n\
01170 MSG: geometry_msgs/Vector3\n\
01171 # This represents a vector in free space. \n\
01172 \n\
01173 float64 x\n\
01174 float64 y\n\
01175 float64 z\n\
01176 ================================================================================\n\
01177 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
01178 # Error codes for grasp and place planning\n\
01179 \n\
01180 # plan completed as expected\n\
01181 int32 SUCCESS = 0\n\
01182 \n\
01183 # tf error encountered while transforming\n\
01184 int32 TF_ERROR = 1 \n\
01185 \n\
01186 # some other error\n\
01187 int32 OTHER_ERROR = 2\n\
01188 \n\
01189 # the actual value of this error code\n\
01190 int32 value\n\
01191 ";
01192 }
01193
01194 static const char* value(const ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01195 };
01196
01197 }
01198 }
01199
01200 namespace ros
01201 {
01202 namespace serialization
01203 {
01204
01205 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> >
01206 {
01207 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01208 {
01209 stream.next(m.arm_name);
01210 stream.next(m.target);
01211 stream.next(m.collision_object_name);
01212 stream.next(m.collision_support_surface_name);
01213 stream.next(m.grasps_to_evaluate);
01214 stream.next(m.movable_obstacles);
01215 }
01216
01217 ROS_DECLARE_ALLINONE_SERIALIZER;
01218 };
01219 }
01220 }
01221
01222
01223 namespace ros
01224 {
01225 namespace serialization
01226 {
01227
01228 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> >
01229 {
01230 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01231 {
01232 stream.next(m.grasps);
01233 stream.next(m.error_code);
01234 }
01235
01236 ROS_DECLARE_ALLINONE_SERIALIZER;
01237 };
01238 }
01239 }
01240
01241 namespace ros
01242 {
01243 namespace service_traits
01244 {
01245 template<>
01246 struct MD5Sum<object_manipulation_msgs::GraspPlanning> {
01247 static const char* value()
01248 {
01249 return "01a11c1cdea613dd8705f368e1dc93dc";
01250 }
01251
01252 static const char* value(const object_manipulation_msgs::GraspPlanning&) { return value(); }
01253 };
01254
01255 template<>
01256 struct DataType<object_manipulation_msgs::GraspPlanning> {
01257 static const char* value()
01258 {
01259 return "object_manipulation_msgs/GraspPlanning";
01260 }
01261
01262 static const char* value(const object_manipulation_msgs::GraspPlanning&) { return value(); }
01263 };
01264
01265 template<class ContainerAllocator>
01266 struct MD5Sum<object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
01267 static const char* value()
01268 {
01269 return "01a11c1cdea613dd8705f368e1dc93dc";
01270 }
01271
01272 static const char* value(const object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
01273 };
01274
01275 template<class ContainerAllocator>
01276 struct DataType<object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
01277 static const char* value()
01278 {
01279 return "object_manipulation_msgs/GraspPlanning";
01280 }
01281
01282 static const char* value(const object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
01283 };
01284
01285 template<class ContainerAllocator>
01286 struct MD5Sum<object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01287 static const char* value()
01288 {
01289 return "01a11c1cdea613dd8705f368e1dc93dc";
01290 }
01291
01292 static const char* value(const object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01293 };
01294
01295 template<class ContainerAllocator>
01296 struct DataType<object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01297 static const char* value()
01298 {
01299 return "object_manipulation_msgs/GraspPlanning";
01300 }
01301
01302 static const char* value(const object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01303 };
01304
01305 }
01306 }
01307
01308 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_GRASPPLANNING_H
01309