00001
00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H
00003 #define PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/GraspableObject.h"
00014 #include "geometry_msgs/PoseStamped.h"
00015
00016 namespace pr2_pick_and_place_service
00017 {
00018 template <class ContainerAllocator>
00019 struct PickPlaceObject_ : public ros::Message
00020 {
00021 typedef PickPlaceObject_<ContainerAllocator> Type;
00022
00023 PickPlaceObject_()
00024 : objectid(0)
00025 , object()
00026 , pose()
00027 , boundingbox()
00028 {
00029 }
00030
00031 PickPlaceObject_(const ContainerAllocator& _alloc)
00032 : objectid(0)
00033 , object(_alloc)
00034 , pose(_alloc)
00035 , boundingbox(_alloc)
00036 {
00037 }
00038
00039 typedef int32_t _objectid_type;
00040 int32_t objectid;
00041
00042 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _object_type;
00043 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> object;
00044
00045 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _pose_type;
00046 ::geometry_msgs::PoseStamped_<ContainerAllocator> pose;
00047
00048 typedef std::vector<double, typename ContainerAllocator::template rebind<double>::other > _boundingbox_type;
00049 std::vector<double, typename ContainerAllocator::template rebind<double>::other > boundingbox;
00050
00051
00052 ROS_DEPRECATED uint32_t get_boundingbox_size() const { return (uint32_t)boundingbox.size(); }
00053 ROS_DEPRECATED void set_boundingbox_size(uint32_t size) { boundingbox.resize((size_t)size); }
00054 ROS_DEPRECATED void get_boundingbox_vec(std::vector<double, typename ContainerAllocator::template rebind<double>::other > & vec) const { vec = this->boundingbox; }
00055 ROS_DEPRECATED void set_boundingbox_vec(const std::vector<double, typename ContainerAllocator::template rebind<double>::other > & vec) { this->boundingbox = vec; }
00056 private:
00057 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/PickPlaceObject"; }
00058 public:
00059 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00060
00061 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00062
00063 private:
00064 static const char* __s_getMD5Sum_() { return "764ccc276c87e0e5a5198c8b20e022f2"; }
00065 public:
00066 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00067
00068 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00069
00070 private:
00071 static const char* __s_getMessageDefinition_() { return "int32 objectid\n\
00072 object_manipulation_msgs/GraspableObject object\n\
00073 geometry_msgs/PoseStamped pose\n\
00074 float64[] boundingbox\n\
00075 \n\
00076 ================================================================================\n\
00077 MSG: object_manipulation_msgs/GraspableObject\n\
00078 # an object that the object_manipulator can work on\n\
00079 \n\
00080 # a graspable object can be represented in multiple ways. This message\n\
00081 # can contain all of them. Which one is actually used is up to the receiver\n\
00082 # of this message. When adding new representations, one must be careful that\n\
00083 # they have reasonable lightweight defaults indicating that that particular\n\
00084 # representation is not available.\n\
00085 \n\
00086 # the tf frame to be used as a reference frame when combining information from\n\
00087 # the different representations below\n\
00088 string reference_frame_id\n\
00089 \n\
00090 # potential recognition results from a database of models\n\
00091 # all poses are relative to the object reference pose\n\
00092 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00093 \n\
00094 # the point cloud itself\n\
00095 sensor_msgs/PointCloud cluster\n\
00096 \n\
00097 # a region of a PointCloud2 of interest\n\
00098 object_manipulation_msgs/SceneRegion region\n\
00099 \n\
00100 \n\
00101 ================================================================================\n\
00102 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00103 # Informs that a specific model from the Model Database has been \n\
00104 # identified at a certain location\n\
00105 \n\
00106 # the database id of the model\n\
00107 int32 model_id\n\
00108 \n\
00109 # the pose that it can be found in\n\
00110 geometry_msgs/PoseStamped pose\n\
00111 \n\
00112 # a measure of the confidence level in this detection result\n\
00113 float32 confidence\n\
00114 ================================================================================\n\
00115 MSG: geometry_msgs/PoseStamped\n\
00116 # A Pose with reference coordinate frame and timestamp\n\
00117 Header header\n\
00118 Pose pose\n\
00119 \n\
00120 ================================================================================\n\
00121 MSG: std_msgs/Header\n\
00122 # Standard metadata for higher-level stamped data types.\n\
00123 # This is generally used to communicate timestamped data \n\
00124 # in a particular coordinate frame.\n\
00125 # \n\
00126 # sequence ID: consecutively increasing ID \n\
00127 uint32 seq\n\
00128 #Two-integer timestamp that is expressed as:\n\
00129 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00130 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00131 # time-handling sugar is provided by the client library\n\
00132 time stamp\n\
00133 #Frame this data is associated with\n\
00134 # 0: no frame\n\
00135 # 1: global frame\n\
00136 string frame_id\n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: geometry_msgs/Pose\n\
00140 # A representation of pose in free space, composed of postion and orientation. \n\
00141 Point position\n\
00142 Quaternion orientation\n\
00143 \n\
00144 ================================================================================\n\
00145 MSG: geometry_msgs/Point\n\
00146 # This contains the position of a point in free space\n\
00147 float64 x\n\
00148 float64 y\n\
00149 float64 z\n\
00150 \n\
00151 ================================================================================\n\
00152 MSG: geometry_msgs/Quaternion\n\
00153 # This represents an orientation in free space in quaternion form.\n\
00154 \n\
00155 float64 x\n\
00156 float64 y\n\
00157 float64 z\n\
00158 float64 w\n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: sensor_msgs/PointCloud\n\
00162 # This message holds a collection of 3d points, plus optional additional\n\
00163 # information about each point.\n\
00164 \n\
00165 # Time of sensor data acquisition, coordinate frame ID.\n\
00166 Header header\n\
00167 \n\
00168 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00169 # in the frame given in the header.\n\
00170 geometry_msgs/Point32[] points\n\
00171 \n\
00172 # Each channel should have the same number of elements as points array,\n\
00173 # and the data in each channel should correspond 1:1 with each point.\n\
00174 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00175 ChannelFloat32[] channels\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: geometry_msgs/Point32\n\
00179 # This contains the position of a point in free space(with 32 bits of precision).\n\
00180 # It is recommeded to use Point wherever possible instead of Point32. \n\
00181 # \n\
00182 # This recommendation is to promote interoperability. \n\
00183 #\n\
00184 # This message is designed to take up less space when sending\n\
00185 # lots of points at once, as in the case of a PointCloud. \n\
00186 \n\
00187 float32 x\n\
00188 float32 y\n\
00189 float32 z\n\
00190 ================================================================================\n\
00191 MSG: sensor_msgs/ChannelFloat32\n\
00192 # This message is used by the PointCloud message to hold optional data\n\
00193 # associated with each point in the cloud. The length of the values\n\
00194 # array should be the same as the length of the points array in the\n\
00195 # PointCloud, and each value should be associated with the corresponding\n\
00196 # point.\n\
00197 \n\
00198 # Channel names in existing practice include:\n\
00199 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00200 # This is opposite to usual conventions but remains for\n\
00201 # historical reasons. The newer PointCloud2 message has no\n\
00202 # such problem.\n\
00203 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00204 # (R,G,B) values packed into the least significant 24 bits,\n\
00205 # in order.\n\
00206 # \"intensity\" - laser or pixel intensity.\n\
00207 # \"distance\"\n\
00208 \n\
00209 # The channel name should give semantics of the channel (e.g.\n\
00210 # \"intensity\" instead of \"value\").\n\
00211 string name\n\
00212 \n\
00213 # The values array should be 1-1 with the elements of the associated\n\
00214 # PointCloud.\n\
00215 float32[] values\n\
00216 \n\
00217 ================================================================================\n\
00218 MSG: object_manipulation_msgs/SceneRegion\n\
00219 # Point cloud\n\
00220 sensor_msgs/PointCloud2 cloud\n\
00221 \n\
00222 # Indices for the region of interest\n\
00223 int32[] mask\n\
00224 \n\
00225 # One of the corresponding 2D images, if applicable\n\
00226 sensor_msgs/Image image\n\
00227 \n\
00228 # The disparity image, if applicable\n\
00229 sensor_msgs/Image disparity_image\n\
00230 \n\
00231 # Camera info for the camera that took the image\n\
00232 sensor_msgs/CameraInfo cam_info\n\
00233 \n\
00234 ================================================================================\n\
00235 MSG: sensor_msgs/PointCloud2\n\
00236 # This message holds a collection of N-dimensional points, which may\n\
00237 # contain additional information such as normals, intensity, etc. The\n\
00238 # point data is stored as a binary blob, its layout described by the\n\
00239 # contents of the \"fields\" array.\n\
00240 \n\
00241 # The point cloud data may be organized 2d (image-like) or 1d\n\
00242 # (unordered). Point clouds organized as 2d images may be produced by\n\
00243 # camera depth sensors such as stereo or time-of-flight.\n\
00244 \n\
00245 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00246 # points).\n\
00247 Header header\n\
00248 \n\
00249 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00250 # 1 and width is the length of the point cloud.\n\
00251 uint32 height\n\
00252 uint32 width\n\
00253 \n\
00254 # Describes the channels and their layout in the binary data blob.\n\
00255 PointField[] fields\n\
00256 \n\
00257 bool is_bigendian # Is this data bigendian?\n\
00258 uint32 point_step # Length of a point in bytes\n\
00259 uint32 row_step # Length of a row in bytes\n\
00260 uint8[] data # Actual point data, size is (row_step*height)\n\
00261 \n\
00262 bool is_dense # True if there are no invalid points\n\
00263 \n\
00264 ================================================================================\n\
00265 MSG: sensor_msgs/PointField\n\
00266 # This message holds the description of one point entry in the\n\
00267 # PointCloud2 message format.\n\
00268 uint8 INT8 = 1\n\
00269 uint8 UINT8 = 2\n\
00270 uint8 INT16 = 3\n\
00271 uint8 UINT16 = 4\n\
00272 uint8 INT32 = 5\n\
00273 uint8 UINT32 = 6\n\
00274 uint8 FLOAT32 = 7\n\
00275 uint8 FLOAT64 = 8\n\
00276 \n\
00277 string name # Name of field\n\
00278 uint32 offset # Offset from start of point struct\n\
00279 uint8 datatype # Datatype enumeration, see above\n\
00280 uint32 count # How many elements in the field\n\
00281 \n\
00282 ================================================================================\n\
00283 MSG: sensor_msgs/Image\n\
00284 # This message contains an uncompressed image\n\
00285 # (0, 0) is at top-left corner of image\n\
00286 #\n\
00287 \n\
00288 Header header # Header timestamp should be acquisition time of image\n\
00289 # Header frame_id should be optical frame of camera\n\
00290 # origin of frame should be optical center of cameara\n\
00291 # +x should point to the right in the image\n\
00292 # +y should point down in the image\n\
00293 # +z should point into to plane of the image\n\
00294 # If the frame_id here and the frame_id of the CameraInfo\n\
00295 # message associated with the image conflict\n\
00296 # the behavior is undefined\n\
00297 \n\
00298 uint32 height # image height, that is, number of rows\n\
00299 uint32 width # image width, that is, number of columns\n\
00300 \n\
00301 # The legal values for encoding are in file src/image_encodings.cpp\n\
00302 # If you want to standardize a new string format, join\n\
00303 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00304 \n\
00305 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00306 # taken from the list of strings in src/image_encodings.cpp\n\
00307 \n\
00308 uint8 is_bigendian # is this data bigendian?\n\
00309 uint32 step # Full row length in bytes\n\
00310 uint8[] data # actual matrix data, size is (step * rows)\n\
00311 \n\
00312 ================================================================================\n\
00313 MSG: sensor_msgs/CameraInfo\n\
00314 # This message defines meta information for a camera. It should be in a\n\
00315 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00316 # image topics named:\n\
00317 #\n\
00318 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00319 # image - monochrome, distorted\n\
00320 # image_color - color, distorted\n\
00321 # image_rect - monochrome, rectified\n\
00322 # image_rect_color - color, rectified\n\
00323 #\n\
00324 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00325 # for producing the four processed image topics from image_raw and\n\
00326 # camera_info. The meaning of the camera parameters are described in\n\
00327 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00328 #\n\
00329 # The image_geometry package provides a user-friendly interface to\n\
00330 # common operations using this meta information. If you want to, e.g.,\n\
00331 # project a 3d point into image coordinates, we strongly recommend\n\
00332 # using image_geometry.\n\
00333 #\n\
00334 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00335 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00336 # indicates an uncalibrated camera.\n\
00337 \n\
00338 #######################################################################\n\
00339 # Image acquisition info #\n\
00340 #######################################################################\n\
00341 \n\
00342 # Time of image acquisition, camera coordinate frame ID\n\
00343 Header header # Header timestamp should be acquisition time of image\n\
00344 # Header frame_id should be optical frame of camera\n\
00345 # origin of frame should be optical center of camera\n\
00346 # +x should point to the right in the image\n\
00347 # +y should point down in the image\n\
00348 # +z should point into the plane of the image\n\
00349 \n\
00350 \n\
00351 #######################################################################\n\
00352 # Calibration Parameters #\n\
00353 #######################################################################\n\
00354 # These are fixed during camera calibration. Their values will be the #\n\
00355 # same in all messages until the camera is recalibrated. Note that #\n\
00356 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00357 # #\n\
00358 # The internal parameters can be used to warp a raw (distorted) image #\n\
00359 # to: #\n\
00360 # 1. An undistorted image (requires D and K) #\n\
00361 # 2. A rectified image (requires D, K, R) #\n\
00362 # The projection matrix P projects 3D points into the rectified image.#\n\
00363 #######################################################################\n\
00364 \n\
00365 # The image dimensions with which the camera was calibrated. Normally\n\
00366 # this will be the full camera resolution in pixels.\n\
00367 uint32 height\n\
00368 uint32 width\n\
00369 \n\
00370 # The distortion model used. Supported models are listed in\n\
00371 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00372 # simple model of radial and tangential distortion - is sufficent.\n\
00373 string distortion_model\n\
00374 \n\
00375 # The distortion parameters, size depending on the distortion model.\n\
00376 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00377 float64[] D\n\
00378 \n\
00379 # Intrinsic camera matrix for the raw (distorted) images.\n\
00380 # [fx 0 cx]\n\
00381 # K = [ 0 fy cy]\n\
00382 # [ 0 0 1]\n\
00383 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00384 # coordinates using the focal lengths (fx, fy) and principal point\n\
00385 # (cx, cy).\n\
00386 float64[9] K # 3x3 row-major matrix\n\
00387 \n\
00388 # Rectification matrix (stereo cameras only)\n\
00389 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00390 # stereo image plane so that epipolar lines in both stereo images are\n\
00391 # parallel.\n\
00392 float64[9] R # 3x3 row-major matrix\n\
00393 \n\
00394 # Projection/camera matrix\n\
00395 # [fx' 0 cx' Tx]\n\
00396 # P = [ 0 fy' cy' Ty]\n\
00397 # [ 0 0 1 0]\n\
00398 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00399 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00400 # is the normal camera intrinsic matrix for the rectified image.\n\
00401 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00402 # coordinates using the focal lengths (fx', fy') and principal point\n\
00403 # (cx', cy') - these may differ from the values in K.\n\
00404 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00405 # also have R = the identity and P[1:3,1:3] = K.\n\
00406 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00407 # position of the optical center of the second camera in the first\n\
00408 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00409 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00410 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00411 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00412 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00413 # the rectified image is given by:\n\
00414 # [u v w]' = P * [X Y Z 1]'\n\
00415 # x = u / w\n\
00416 # y = v / w\n\
00417 # This holds for both images of a stereo pair.\n\
00418 float64[12] P # 3x4 row-major matrix\n\
00419 \n\
00420 \n\
00421 #######################################################################\n\
00422 # Operational Parameters #\n\
00423 #######################################################################\n\
00424 # These define the image region actually captured by the camera #\n\
00425 # driver. Although they affect the geometry of the output image, they #\n\
00426 # may be changed freely without recalibrating the camera. #\n\
00427 #######################################################################\n\
00428 \n\
00429 # Binning refers here to any camera setting which combines rectangular\n\
00430 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00431 # resolution of the output image to\n\
00432 # (width / binning_x) x (height / binning_y).\n\
00433 # The default values binning_x = binning_y = 0 is considered the same\n\
00434 # as binning_x = binning_y = 1 (no subsampling).\n\
00435 uint32 binning_x\n\
00436 uint32 binning_y\n\
00437 \n\
00438 # Region of interest (subwindow of full camera resolution), given in\n\
00439 # full resolution (unbinned) image coordinates. A particular ROI\n\
00440 # always denotes the same window of pixels on the camera sensor,\n\
00441 # regardless of binning settings.\n\
00442 # The default setting of roi (all values 0) is considered the same as\n\
00443 # full resolution (roi.width = width, roi.height = height).\n\
00444 RegionOfInterest roi\n\
00445 \n\
00446 ================================================================================\n\
00447 MSG: sensor_msgs/RegionOfInterest\n\
00448 # This message is used to specify a region of interest within an image.\n\
00449 #\n\
00450 # When used to specify the ROI setting of the camera when the image was\n\
00451 # taken, the height and width fields should either match the height and\n\
00452 # width fields for the associated image; or height = width = 0\n\
00453 # indicates that the full resolution image was captured.\n\
00454 \n\
00455 uint32 x_offset # Leftmost pixel of the ROI\n\
00456 # (0 if the ROI includes the left edge of the image)\n\
00457 uint32 y_offset # Topmost pixel of the ROI\n\
00458 # (0 if the ROI includes the top edge of the image)\n\
00459 uint32 height # Height of ROI\n\
00460 uint32 width # Width of ROI\n\
00461 \n\
00462 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00463 # ROI in this message. Typically this should be False if the full image\n\
00464 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00465 # used).\n\
00466 bool do_rectify\n\
00467 \n\
00468 "; }
00469 public:
00470 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00471
00472 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00473
00474 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00475 {
00476 ros::serialization::OStream stream(write_ptr, 1000000000);
00477 ros::serialization::serialize(stream, objectid);
00478 ros::serialization::serialize(stream, object);
00479 ros::serialization::serialize(stream, pose);
00480 ros::serialization::serialize(stream, boundingbox);
00481 return stream.getData();
00482 }
00483
00484 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00485 {
00486 ros::serialization::IStream stream(read_ptr, 1000000000);
00487 ros::serialization::deserialize(stream, objectid);
00488 ros::serialization::deserialize(stream, object);
00489 ros::serialization::deserialize(stream, pose);
00490 ros::serialization::deserialize(stream, boundingbox);
00491 return stream.getData();
00492 }
00493
00494 ROS_DEPRECATED virtual uint32_t serializationLength() const
00495 {
00496 uint32_t size = 0;
00497 size += ros::serialization::serializationLength(objectid);
00498 size += ros::serialization::serializationLength(object);
00499 size += ros::serialization::serializationLength(pose);
00500 size += ros::serialization::serializationLength(boundingbox);
00501 return size;
00502 }
00503
00504 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > Ptr;
00505 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> const> ConstPtr;
00506 };
00507 typedef ::pr2_pick_and_place_service::PickPlaceObject_<std::allocator<void> > PickPlaceObject;
00508
00509 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject> PickPlaceObjectPtr;
00510 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject const> PickPlaceObjectConstPtr;
00511
00512
00513 template<typename ContainerAllocator>
00514 std::ostream& operator<<(std::ostream& s, const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> & v)
00515 {
00516 ros::message_operations::Printer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::stream(s, "", v);
00517 return s;}
00518
00519 }
00520
00521 namespace ros
00522 {
00523 namespace message_traits
00524 {
00525 template<class ContainerAllocator>
00526 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > {
00527 static const char* value()
00528 {
00529 return "764ccc276c87e0e5a5198c8b20e022f2";
00530 }
00531
00532 static const char* value(const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); }
00533 static const uint64_t static_value1 = 0x764ccc276c87e0e5ULL;
00534 static const uint64_t static_value2 = 0xa5198c8b20e022f2ULL;
00535 };
00536
00537 template<class ContainerAllocator>
00538 struct DataType< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > {
00539 static const char* value()
00540 {
00541 return "pr2_pick_and_place_service/PickPlaceObject";
00542 }
00543
00544 static const char* value(const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); }
00545 };
00546
00547 template<class ContainerAllocator>
00548 struct Definition< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > {
00549 static const char* value()
00550 {
00551 return "int32 objectid\n\
00552 object_manipulation_msgs/GraspableObject object\n\
00553 geometry_msgs/PoseStamped pose\n\
00554 float64[] boundingbox\n\
00555 \n\
00556 ================================================================================\n\
00557 MSG: object_manipulation_msgs/GraspableObject\n\
00558 # an object that the object_manipulator can work on\n\
00559 \n\
00560 # a graspable object can be represented in multiple ways. This message\n\
00561 # can contain all of them. Which one is actually used is up to the receiver\n\
00562 # of this message. When adding new representations, one must be careful that\n\
00563 # they have reasonable lightweight defaults indicating that that particular\n\
00564 # representation is not available.\n\
00565 \n\
00566 # the tf frame to be used as a reference frame when combining information from\n\
00567 # the different representations below\n\
00568 string reference_frame_id\n\
00569 \n\
00570 # potential recognition results from a database of models\n\
00571 # all poses are relative to the object reference pose\n\
00572 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00573 \n\
00574 # the point cloud itself\n\
00575 sensor_msgs/PointCloud cluster\n\
00576 \n\
00577 # a region of a PointCloud2 of interest\n\
00578 object_manipulation_msgs/SceneRegion region\n\
00579 \n\
00580 \n\
00581 ================================================================================\n\
00582 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00583 # Informs that a specific model from the Model Database has been \n\
00584 # identified at a certain location\n\
00585 \n\
00586 # the database id of the model\n\
00587 int32 model_id\n\
00588 \n\
00589 # the pose that it can be found in\n\
00590 geometry_msgs/PoseStamped pose\n\
00591 \n\
00592 # a measure of the confidence level in this detection result\n\
00593 float32 confidence\n\
00594 ================================================================================\n\
00595 MSG: geometry_msgs/PoseStamped\n\
00596 # A Pose with reference coordinate frame and timestamp\n\
00597 Header header\n\
00598 Pose pose\n\
00599 \n\
00600 ================================================================================\n\
00601 MSG: std_msgs/Header\n\
00602 # Standard metadata for higher-level stamped data types.\n\
00603 # This is generally used to communicate timestamped data \n\
00604 # in a particular coordinate frame.\n\
00605 # \n\
00606 # sequence ID: consecutively increasing ID \n\
00607 uint32 seq\n\
00608 #Two-integer timestamp that is expressed as:\n\
00609 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00610 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00611 # time-handling sugar is provided by the client library\n\
00612 time stamp\n\
00613 #Frame this data is associated with\n\
00614 # 0: no frame\n\
00615 # 1: global frame\n\
00616 string frame_id\n\
00617 \n\
00618 ================================================================================\n\
00619 MSG: geometry_msgs/Pose\n\
00620 # A representation of pose in free space, composed of postion and orientation. \n\
00621 Point position\n\
00622 Quaternion orientation\n\
00623 \n\
00624 ================================================================================\n\
00625 MSG: geometry_msgs/Point\n\
00626 # This contains the position of a point in free space\n\
00627 float64 x\n\
00628 float64 y\n\
00629 float64 z\n\
00630 \n\
00631 ================================================================================\n\
00632 MSG: geometry_msgs/Quaternion\n\
00633 # This represents an orientation in free space in quaternion form.\n\
00634 \n\
00635 float64 x\n\
00636 float64 y\n\
00637 float64 z\n\
00638 float64 w\n\
00639 \n\
00640 ================================================================================\n\
00641 MSG: sensor_msgs/PointCloud\n\
00642 # This message holds a collection of 3d points, plus optional additional\n\
00643 # information about each point.\n\
00644 \n\
00645 # Time of sensor data acquisition, coordinate frame ID.\n\
00646 Header header\n\
00647 \n\
00648 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00649 # in the frame given in the header.\n\
00650 geometry_msgs/Point32[] points\n\
00651 \n\
00652 # Each channel should have the same number of elements as points array,\n\
00653 # and the data in each channel should correspond 1:1 with each point.\n\
00654 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00655 ChannelFloat32[] channels\n\
00656 \n\
00657 ================================================================================\n\
00658 MSG: geometry_msgs/Point32\n\
00659 # This contains the position of a point in free space(with 32 bits of precision).\n\
00660 # It is recommeded to use Point wherever possible instead of Point32. \n\
00661 # \n\
00662 # This recommendation is to promote interoperability. \n\
00663 #\n\
00664 # This message is designed to take up less space when sending\n\
00665 # lots of points at once, as in the case of a PointCloud. \n\
00666 \n\
00667 float32 x\n\
00668 float32 y\n\
00669 float32 z\n\
00670 ================================================================================\n\
00671 MSG: sensor_msgs/ChannelFloat32\n\
00672 # This message is used by the PointCloud message to hold optional data\n\
00673 # associated with each point in the cloud. The length of the values\n\
00674 # array should be the same as the length of the points array in the\n\
00675 # PointCloud, and each value should be associated with the corresponding\n\
00676 # point.\n\
00677 \n\
00678 # Channel names in existing practice include:\n\
00679 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00680 # This is opposite to usual conventions but remains for\n\
00681 # historical reasons. The newer PointCloud2 message has no\n\
00682 # such problem.\n\
00683 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00684 # (R,G,B) values packed into the least significant 24 bits,\n\
00685 # in order.\n\
00686 # \"intensity\" - laser or pixel intensity.\n\
00687 # \"distance\"\n\
00688 \n\
00689 # The channel name should give semantics of the channel (e.g.\n\
00690 # \"intensity\" instead of \"value\").\n\
00691 string name\n\
00692 \n\
00693 # The values array should be 1-1 with the elements of the associated\n\
00694 # PointCloud.\n\
00695 float32[] values\n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: object_manipulation_msgs/SceneRegion\n\
00699 # Point cloud\n\
00700 sensor_msgs/PointCloud2 cloud\n\
00701 \n\
00702 # Indices for the region of interest\n\
00703 int32[] mask\n\
00704 \n\
00705 # One of the corresponding 2D images, if applicable\n\
00706 sensor_msgs/Image image\n\
00707 \n\
00708 # The disparity image, if applicable\n\
00709 sensor_msgs/Image disparity_image\n\
00710 \n\
00711 # Camera info for the camera that took the image\n\
00712 sensor_msgs/CameraInfo cam_info\n\
00713 \n\
00714 ================================================================================\n\
00715 MSG: sensor_msgs/PointCloud2\n\
00716 # This message holds a collection of N-dimensional points, which may\n\
00717 # contain additional information such as normals, intensity, etc. The\n\
00718 # point data is stored as a binary blob, its layout described by the\n\
00719 # contents of the \"fields\" array.\n\
00720 \n\
00721 # The point cloud data may be organized 2d (image-like) or 1d\n\
00722 # (unordered). Point clouds organized as 2d images may be produced by\n\
00723 # camera depth sensors such as stereo or time-of-flight.\n\
00724 \n\
00725 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00726 # points).\n\
00727 Header header\n\
00728 \n\
00729 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00730 # 1 and width is the length of the point cloud.\n\
00731 uint32 height\n\
00732 uint32 width\n\
00733 \n\
00734 # Describes the channels and their layout in the binary data blob.\n\
00735 PointField[] fields\n\
00736 \n\
00737 bool is_bigendian # Is this data bigendian?\n\
00738 uint32 point_step # Length of a point in bytes\n\
00739 uint32 row_step # Length of a row in bytes\n\
00740 uint8[] data # Actual point data, size is (row_step*height)\n\
00741 \n\
00742 bool is_dense # True if there are no invalid points\n\
00743 \n\
00744 ================================================================================\n\
00745 MSG: sensor_msgs/PointField\n\
00746 # This message holds the description of one point entry in the\n\
00747 # PointCloud2 message format.\n\
00748 uint8 INT8 = 1\n\
00749 uint8 UINT8 = 2\n\
00750 uint8 INT16 = 3\n\
00751 uint8 UINT16 = 4\n\
00752 uint8 INT32 = 5\n\
00753 uint8 UINT32 = 6\n\
00754 uint8 FLOAT32 = 7\n\
00755 uint8 FLOAT64 = 8\n\
00756 \n\
00757 string name # Name of field\n\
00758 uint32 offset # Offset from start of point struct\n\
00759 uint8 datatype # Datatype enumeration, see above\n\
00760 uint32 count # How many elements in the field\n\
00761 \n\
00762 ================================================================================\n\
00763 MSG: sensor_msgs/Image\n\
00764 # This message contains an uncompressed image\n\
00765 # (0, 0) is at top-left corner of image\n\
00766 #\n\
00767 \n\
00768 Header header # Header timestamp should be acquisition time of image\n\
00769 # Header frame_id should be optical frame of camera\n\
00770 # origin of frame should be optical center of cameara\n\
00771 # +x should point to the right in the image\n\
00772 # +y should point down in the image\n\
00773 # +z should point into to plane of the image\n\
00774 # If the frame_id here and the frame_id of the CameraInfo\n\
00775 # message associated with the image conflict\n\
00776 # the behavior is undefined\n\
00777 \n\
00778 uint32 height # image height, that is, number of rows\n\
00779 uint32 width # image width, that is, number of columns\n\
00780 \n\
00781 # The legal values for encoding are in file src/image_encodings.cpp\n\
00782 # If you want to standardize a new string format, join\n\
00783 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00784 \n\
00785 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00786 # taken from the list of strings in src/image_encodings.cpp\n\
00787 \n\
00788 uint8 is_bigendian # is this data bigendian?\n\
00789 uint32 step # Full row length in bytes\n\
00790 uint8[] data # actual matrix data, size is (step * rows)\n\
00791 \n\
00792 ================================================================================\n\
00793 MSG: sensor_msgs/CameraInfo\n\
00794 # This message defines meta information for a camera. It should be in a\n\
00795 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00796 # image topics named:\n\
00797 #\n\
00798 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00799 # image - monochrome, distorted\n\
00800 # image_color - color, distorted\n\
00801 # image_rect - monochrome, rectified\n\
00802 # image_rect_color - color, rectified\n\
00803 #\n\
00804 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00805 # for producing the four processed image topics from image_raw and\n\
00806 # camera_info. The meaning of the camera parameters are described in\n\
00807 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00808 #\n\
00809 # The image_geometry package provides a user-friendly interface to\n\
00810 # common operations using this meta information. If you want to, e.g.,\n\
00811 # project a 3d point into image coordinates, we strongly recommend\n\
00812 # using image_geometry.\n\
00813 #\n\
00814 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00815 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00816 # indicates an uncalibrated camera.\n\
00817 \n\
00818 #######################################################################\n\
00819 # Image acquisition info #\n\
00820 #######################################################################\n\
00821 \n\
00822 # Time of image acquisition, camera coordinate frame ID\n\
00823 Header header # Header timestamp should be acquisition time of image\n\
00824 # Header frame_id should be optical frame of camera\n\
00825 # origin of frame should be optical center of camera\n\
00826 # +x should point to the right in the image\n\
00827 # +y should point down in the image\n\
00828 # +z should point into the plane of the image\n\
00829 \n\
00830 \n\
00831 #######################################################################\n\
00832 # Calibration Parameters #\n\
00833 #######################################################################\n\
00834 # These are fixed during camera calibration. Their values will be the #\n\
00835 # same in all messages until the camera is recalibrated. Note that #\n\
00836 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00837 # #\n\
00838 # The internal parameters can be used to warp a raw (distorted) image #\n\
00839 # to: #\n\
00840 # 1. An undistorted image (requires D and K) #\n\
00841 # 2. A rectified image (requires D, K, R) #\n\
00842 # The projection matrix P projects 3D points into the rectified image.#\n\
00843 #######################################################################\n\
00844 \n\
00845 # The image dimensions with which the camera was calibrated. Normally\n\
00846 # this will be the full camera resolution in pixels.\n\
00847 uint32 height\n\
00848 uint32 width\n\
00849 \n\
00850 # The distortion model used. Supported models are listed in\n\
00851 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00852 # simple model of radial and tangential distortion - is sufficent.\n\
00853 string distortion_model\n\
00854 \n\
00855 # The distortion parameters, size depending on the distortion model.\n\
00856 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00857 float64[] D\n\
00858 \n\
00859 # Intrinsic camera matrix for the raw (distorted) images.\n\
00860 # [fx 0 cx]\n\
00861 # K = [ 0 fy cy]\n\
00862 # [ 0 0 1]\n\
00863 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00864 # coordinates using the focal lengths (fx, fy) and principal point\n\
00865 # (cx, cy).\n\
00866 float64[9] K # 3x3 row-major matrix\n\
00867 \n\
00868 # Rectification matrix (stereo cameras only)\n\
00869 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00870 # stereo image plane so that epipolar lines in both stereo images are\n\
00871 # parallel.\n\
00872 float64[9] R # 3x3 row-major matrix\n\
00873 \n\
00874 # Projection/camera matrix\n\
00875 # [fx' 0 cx' Tx]\n\
00876 # P = [ 0 fy' cy' Ty]\n\
00877 # [ 0 0 1 0]\n\
00878 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00879 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00880 # is the normal camera intrinsic matrix for the rectified image.\n\
00881 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00882 # coordinates using the focal lengths (fx', fy') and principal point\n\
00883 # (cx', cy') - these may differ from the values in K.\n\
00884 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00885 # also have R = the identity and P[1:3,1:3] = K.\n\
00886 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00887 # position of the optical center of the second camera in the first\n\
00888 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00889 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00890 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00891 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00892 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00893 # the rectified image is given by:\n\
00894 # [u v w]' = P * [X Y Z 1]'\n\
00895 # x = u / w\n\
00896 # y = v / w\n\
00897 # This holds for both images of a stereo pair.\n\
00898 float64[12] P # 3x4 row-major matrix\n\
00899 \n\
00900 \n\
00901 #######################################################################\n\
00902 # Operational Parameters #\n\
00903 #######################################################################\n\
00904 # These define the image region actually captured by the camera #\n\
00905 # driver. Although they affect the geometry of the output image, they #\n\
00906 # may be changed freely without recalibrating the camera. #\n\
00907 #######################################################################\n\
00908 \n\
00909 # Binning refers here to any camera setting which combines rectangular\n\
00910 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00911 # resolution of the output image to\n\
00912 # (width / binning_x) x (height / binning_y).\n\
00913 # The default values binning_x = binning_y = 0 is considered the same\n\
00914 # as binning_x = binning_y = 1 (no subsampling).\n\
00915 uint32 binning_x\n\
00916 uint32 binning_y\n\
00917 \n\
00918 # Region of interest (subwindow of full camera resolution), given in\n\
00919 # full resolution (unbinned) image coordinates. A particular ROI\n\
00920 # always denotes the same window of pixels on the camera sensor,\n\
00921 # regardless of binning settings.\n\
00922 # The default setting of roi (all values 0) is considered the same as\n\
00923 # full resolution (roi.width = width, roi.height = height).\n\
00924 RegionOfInterest roi\n\
00925 \n\
00926 ================================================================================\n\
00927 MSG: sensor_msgs/RegionOfInterest\n\
00928 # This message is used to specify a region of interest within an image.\n\
00929 #\n\
00930 # When used to specify the ROI setting of the camera when the image was\n\
00931 # taken, the height and width fields should either match the height and\n\
00932 # width fields for the associated image; or height = width = 0\n\
00933 # indicates that the full resolution image was captured.\n\
00934 \n\
00935 uint32 x_offset # Leftmost pixel of the ROI\n\
00936 # (0 if the ROI includes the left edge of the image)\n\
00937 uint32 y_offset # Topmost pixel of the ROI\n\
00938 # (0 if the ROI includes the top edge of the image)\n\
00939 uint32 height # Height of ROI\n\
00940 uint32 width # Width of ROI\n\
00941 \n\
00942 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00943 # ROI in this message. Typically this should be False if the full image\n\
00944 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00945 # used).\n\
00946 bool do_rectify\n\
00947 \n\
00948 ";
00949 }
00950
00951 static const char* value(const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); }
00952 };
00953
00954 }
00955 }
00956
00957 namespace ros
00958 {
00959 namespace serialization
00960 {
00961
00962 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >
00963 {
00964 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00965 {
00966 stream.next(m.objectid);
00967 stream.next(m.object);
00968 stream.next(m.pose);
00969 stream.next(m.boundingbox);
00970 }
00971
00972 ROS_DECLARE_ALLINONE_SERIALIZER;
00973 };
00974 }
00975 }
00976
00977 namespace ros
00978 {
00979 namespace message_operations
00980 {
00981
00982 template<class ContainerAllocator>
00983 struct Printer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >
00984 {
00985 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> & v)
00986 {
00987 s << indent << "objectid: ";
00988 Printer<int32_t>::stream(s, indent + " ", v.objectid);
00989 s << indent << "object: ";
00990 s << std::endl;
00991 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.object);
00992 s << indent << "pose: ";
00993 s << std::endl;
00994 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.pose);
00995 s << indent << "boundingbox[]" << std::endl;
00996 for (size_t i = 0; i < v.boundingbox.size(); ++i)
00997 {
00998 s << indent << " boundingbox[" << i << "]: ";
00999 Printer<double>::stream(s, indent + " ", v.boundingbox[i]);
01000 }
01001 }
01002 };
01003
01004
01005 }
01006 }
01007
01008 #endif // PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H
01009