Warning
You're reading the documentation for a version of ROS 2 that has reached its EOL (end-of-life), and is no longer officially supported.
If you want up-to-date information, please have a look at Jazzy.
Building ROS 2 on Ubuntu Linux
System requirements
Debian-based target platforms for Dashing Diademata are (see REP 2000):
Tier 1: Ubuntu Linux - Bionic Beaver (18.04) 64-bit
Tier 3: Debian Linux - Stretch (9) 64-bit
Other Linux platforms with varying support levels include:
Arch Linux, see alternate instructions
Fedora Linux, see alternate instructions
OpenEmbedded / webOS OSE, see alternate instructions
System setup
Set locale
Make sure you have a locale which supports UTF-8
.
If you are in a minimal environment (such as a docker container), the locale may be something minimal like POSIX
.
We test with the following settings. However, it should be fine if you’re using a different UTF-8 supported locale.
locale # check for UTF-8
sudo apt update && sudo apt install locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8
locale # verify settings
Add the ROS 2 apt repository
You will need to add the ROS 2 apt repositories to your system. To do so, first authorize our GPG key with apt like this:
sudo apt update && sudo apt install curl gnupg2 lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg
And then add the repository to your sources list:
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null
Install development tools and ROS tools
sudo apt update && sudo apt install -y \
build-essential \
cmake \
git \
python3-colcon-common-extensions \
python3-pip \
python-rosdep \
python3-vcstool \
wget
# install some pip packages needed for testing
python3 -m pip install -U \
argcomplete \
flake8 \
flake8-blind-except \
flake8-builtins \
flake8-class-newline \
flake8-comprehensions \
flake8-deprecated \
flake8-docstrings \
flake8-import-order \
flake8-quotes \
pytest-repeat \
pytest-rerunfailures \
pytest \
pytest-cov \
pytest-runner \
setuptools
# install Fast-RTPS dependencies
sudo apt install --no-install-recommends -y \
libasio-dev \
libtinyxml2-dev
# install Cyclone DDS dependencies
sudo apt install --no-install-recommends -y \
libcunit1-dev
Get ROS 2 code
Create a workspace and clone all repos:
mkdir -p ~/ros2_dashing/src
cd ~/ros2_dashing
wget https://raw.githubusercontent.com/ros2/ros2/dashing/ros2.repos
vcs import src < ros2.repos
Install dependencies using rosdep
sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src --rosdistro dashing -y --skip-keys "console_bridge fastcdr fastrtps libopensplice67 libopensplice69 rti-connext-dds-5.3.1 urdfdom_headers"
Install additional DDS implementations (optional)
If you would like to use another DDS or RTPS vendor besides the default, eProsima’s Fast RTPS, you can find instructions here.
Build the code in the workspace
If you have already installed ROS 2 another way (either via Debians or the binary distribution), make sure that you run the below commands in a fresh environment that does not have those other installations sourced.
Also ensure that you do not have source /opt/ros/${ROS_DISTRO}/setup.bash
in your .bashrc
.
You can make sure that ROS 2 is not sourced with the command printenv | grep -i ROS
.
The output should be empty.
More info on working with a ROS workspace can be found in this tutorial.
cd ~/ros2_dashing/
colcon build --symlink-install
Note: if you are having trouble compiling all examples and this is preventing you from completing a successful build, you can use COLCON_IGNORE
in the same manner as CATKIN_IGNORE to ignore the subtree or remove the folder from the workspace.
Take for instance: you would like to avoid installing the large OpenCV library.
Well then simply $ touch COLCON_IGNORE
in the cam2image
demo directory to leave it out of the build process.
Environment setup
Source the setup script
Set up your environment by sourcing the following file.
. ~/ros2_dashing/install/setup.bash
Try some examples
In one terminal, source the setup file and then run a C++ talker
:
. ~/ros2_dashing/install/local_setup.bash
ros2 run demo_nodes_cpp talker
In another terminal source the setup file and then run a Python listener
:
. ~/ros2_dashing/install/local_setup.bash
ros2 run demo_nodes_py listener
You should see the talker
saying that it’s Publishing
messages and the listener
saying I heard
those messages.
This verifies both the C++ and Python APIs are working properly.
Hooray!
Next steps after installing
Continue with the tutorials and demos to configure your environment, create your own workspace and packages, and learn ROS 2 core concepts.
Using the ROS 1 bridge
The ROS 1 bridge can connect topics from ROS 1 to ROS 2 and vice-versa. See the dedicated documentation on how to build and use the ROS 1 bridge.
Additional RMW implementations (optional)
The default middleware that ROS 2 uses is Fast-RTPS
, but the middleware (RMW) can be replaced at runtime.
See the guide on how to work with multiple RMWs.
Alternate compilers
Using a different compiler besides gcc to compile ROS 2 is easy. If you set the environment variables CC
and CXX
to executables for a working C and C++ compiler, respectively, and retrigger CMake configuration (by using --force-cmake-config
or by deleting the packages you want to be affected), CMake will reconfigure and use the different compiler.
Clang
To configure CMake to detect and use Clang:
sudo apt install clang
export CC=clang
export CXX=clang++
colcon build --cmake-force-configure
Stay up to date
See Maintaining a source checkout of ROS 2 to periodically refresh your source installation.
Troubleshooting
Troubleshooting techniques can be found here.
Uninstall
If you installed your workspace with colcon as instructed above, “uninstalling” could be just a matter of opening a new terminal and not sourcing the workspace’s
setup
file. This way, your environment will behave as though there is no Dashing install on your system.If you’re also trying to free up space, you can delete the entire workspace directory with:
rm -rf ~/ros2_dashing