lcode.c
Go to the documentation of this file.
1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <limits.h>
14 #include <math.h>
15 #include <stdlib.h>
16 
17 #include "lua.h"
18 
19 #include "lcode.h"
20 #include "ldebug.h"
21 #include "ldo.h"
22 #include "lgc.h"
23 #include "llex.h"
24 #include "lmem.h"
25 #include "lobject.h"
26 #include "lopcodes.h"
27 #include "lparser.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "lvm.h"
31 
32 
33 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
34 #define MAXREGS 255
35 
36 
37 #define hasjumps(e) ((e)->t != (e)->f)
38 
39 
40 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
41 
42 
43 
44 /* semantic error */
45 l_noret luaK_semerror (LexState *ls, const char *msg) {
46  ls->t.token = 0; /* remove "near <token>" from final message */
47  luaX_syntaxerror(ls, msg);
48 }
49 
50 
51 /*
52 ** If expression is a numeric constant, fills 'v' with its value
53 ** and returns 1. Otherwise, returns 0.
54 */
55 static int tonumeral (const expdesc *e, TValue *v) {
56  if (hasjumps(e))
57  return 0; /* not a numeral */
58  switch (e->k) {
59  case VKINT:
60  if (v) setivalue(v, e->u.ival);
61  return 1;
62  case VKFLT:
63  if (v) setfltvalue(v, e->u.nval);
64  return 1;
65  default: return 0;
66  }
67 }
68 
69 
70 /*
71 ** Get the constant value from a constant expression
72 */
73 static TValue *const2val (FuncState *fs, const expdesc *e) {
74  lua_assert(e->k == VCONST);
75  return &fs->ls->dyd->actvar.arr[e->u.info].k;
76 }
77 
78 
79 /*
80 ** If expression is a constant, fills 'v' with its value
81 ** and returns 1. Otherwise, returns 0.
82 */
83 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
84  if (hasjumps(e))
85  return 0; /* not a constant */
86  switch (e->k) {
87  case VFALSE:
88  setbfvalue(v);
89  return 1;
90  case VTRUE:
91  setbtvalue(v);
92  return 1;
93  case VNIL:
94  setnilvalue(v);
95  return 1;
96  case VKSTR: {
97  setsvalue(fs->ls->L, v, e->u.strval);
98  return 1;
99  }
100  case VCONST: {
101  setobj(fs->ls->L, v, const2val(fs, e));
102  return 1;
103  }
104  default: return tonumeral(e, v);
105  }
106 }
107 
108 
109 /*
110 ** Return the previous instruction of the current code. If there
111 ** may be a jump target between the current instruction and the
112 ** previous one, return an invalid instruction (to avoid wrong
113 ** optimizations).
114 */
116  static const Instruction invalidinstruction = ~(Instruction)0;
117  if (fs->pc > fs->lasttarget)
118  return &fs->f->code[fs->pc - 1]; /* previous instruction */
119  else
120  return cast(Instruction*, &invalidinstruction);
121 }
122 
123 
124 /*
125 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
126 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
127 ** range of previous instruction instead of emitting a new one. (For
128 ** instance, 'local a; local b' will generate a single opcode.)
129 */
130 void luaK_nil (FuncState *fs, int from, int n) {
131  int l = from + n - 1; /* last register to set nil */
132  Instruction *previous = previousinstruction(fs);
133  if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
134  int pfrom = GETARG_A(*previous); /* get previous range */
135  int pl = pfrom + GETARG_B(*previous);
136  if ((pfrom <= from && from <= pl + 1) ||
137  (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
138  if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
139  if (pl > l) l = pl; /* l = max(l, pl) */
140  SETARG_A(*previous, from);
141  SETARG_B(*previous, l - from);
142  return;
143  } /* else go through */
144  }
145  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
146 }
147 
148 
149 /*
150 ** Gets the destination address of a jump instruction. Used to traverse
151 ** a list of jumps.
152 */
153 static int getjump (FuncState *fs, int pc) {
154  int offset = GETARG_sJ(fs->f->code[pc]);
155  if (offset == NO_JUMP) /* point to itself represents end of list */
156  return NO_JUMP; /* end of list */
157  else
158  return (pc+1)+offset; /* turn offset into absolute position */
159 }
160 
161 
162 /*
163 ** Fix jump instruction at position 'pc' to jump to 'dest'.
164 ** (Jump addresses are relative in Lua)
165 */
166 static void fixjump (FuncState *fs, int pc, int dest) {
167  Instruction *jmp = &fs->f->code[pc];
168  int offset = dest - (pc + 1);
169  lua_assert(dest != NO_JUMP);
170  if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
171  luaX_syntaxerror(fs->ls, "control structure too long");
172  lua_assert(GET_OPCODE(*jmp) == OP_JMP);
173  SETARG_sJ(*jmp, offset);
174 }
175 
176 
177 /*
178 ** Concatenate jump-list 'l2' into jump-list 'l1'
179 */
180 void luaK_concat (FuncState *fs, int *l1, int l2) {
181  if (l2 == NO_JUMP) return; /* nothing to concatenate? */
182  else if (*l1 == NO_JUMP) /* no original list? */
183  *l1 = l2; /* 'l1' points to 'l2' */
184  else {
185  int list = *l1;
186  int next;
187  while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
188  list = next;
189  fixjump(fs, list, l2); /* last element links to 'l2' */
190  }
191 }
192 
193 
194 /*
195 ** Create a jump instruction and return its position, so its destination
196 ** can be fixed later (with 'fixjump').
197 */
198 int luaK_jump (FuncState *fs) {
199  return codesJ(fs, OP_JMP, NO_JUMP, 0);
200 }
201 
202 
203 /*
204 ** Code a 'return' instruction
205 */
206 void luaK_ret (FuncState *fs, int first, int nret) {
207  OpCode op;
208  switch (nret) {
209  case 0: op = OP_RETURN0; break;
210  case 1: op = OP_RETURN1; break;
211  default: op = OP_RETURN; break;
212  }
213  luaK_codeABC(fs, op, first, nret + 1, 0);
214 }
215 
216 
217 /*
218 ** Code a "conditional jump", that is, a test or comparison opcode
219 ** followed by a jump. Return jump position.
220 */
221 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
222  luaK_codeABCk(fs, op, A, B, C, k);
223  return luaK_jump(fs);
224 }
225 
226 
227 /*
228 ** returns current 'pc' and marks it as a jump target (to avoid wrong
229 ** optimizations with consecutive instructions not in the same basic block).
230 */
232  fs->lasttarget = fs->pc;
233  return fs->pc;
234 }
235 
236 
237 /*
238 ** Returns the position of the instruction "controlling" a given
239 ** jump (that is, its condition), or the jump itself if it is
240 ** unconditional.
241 */
242 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
243  Instruction *pi = &fs->f->code[pc];
244  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
245  return pi-1;
246  else
247  return pi;
248 }
249 
250 
251 /*
252 ** Patch destination register for a TESTSET instruction.
253 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
254 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
255 ** register. Otherwise, change instruction to a simple 'TEST' (produces
256 ** no register value)
257 */
258 static int patchtestreg (FuncState *fs, int node, int reg) {
259  Instruction *i = getjumpcontrol(fs, node);
260  if (GET_OPCODE(*i) != OP_TESTSET)
261  return 0; /* cannot patch other instructions */
262  if (reg != NO_REG && reg != GETARG_B(*i))
263  SETARG_A(*i, reg);
264  else {
265  /* no register to put value or register already has the value;
266  change instruction to simple test */
267  *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
268  }
269  return 1;
270 }
271 
272 
273 /*
274 ** Traverse a list of tests ensuring no one produces a value
275 */
276 static void removevalues (FuncState *fs, int list) {
277  for (; list != NO_JUMP; list = getjump(fs, list))
278  patchtestreg(fs, list, NO_REG);
279 }
280 
281 
282 /*
283 ** Traverse a list of tests, patching their destination address and
284 ** registers: tests producing values jump to 'vtarget' (and put their
285 ** values in 'reg'), other tests jump to 'dtarget'.
286 */
287 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
288  int dtarget) {
289  while (list != NO_JUMP) {
290  int next = getjump(fs, list);
291  if (patchtestreg(fs, list, reg))
292  fixjump(fs, list, vtarget);
293  else
294  fixjump(fs, list, dtarget); /* jump to default target */
295  list = next;
296  }
297 }
298 
299 
300 /*
301 ** Path all jumps in 'list' to jump to 'target'.
302 ** (The assert means that we cannot fix a jump to a forward address
303 ** because we only know addresses once code is generated.)
304 */
305 void luaK_patchlist (FuncState *fs, int list, int target) {
306  lua_assert(target <= fs->pc);
307  patchlistaux(fs, list, target, NO_REG, target);
308 }
309 
310 
311 void luaK_patchtohere (FuncState *fs, int list) {
312  int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
313  luaK_patchlist(fs, list, hr);
314 }
315 
316 
317 /* limit for difference between lines in relative line info. */
318 #define LIMLINEDIFF 0x80
319 
320 
321 /*
322 ** Save line info for a new instruction. If difference from last line
323 ** does not fit in a byte, of after that many instructions, save a new
324 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
325 ** in 'lineinfo' signals the existence of this absolute information.)
326 ** Otherwise, store the difference from last line in 'lineinfo'.
327 */
328 static void savelineinfo (FuncState *fs, Proto *f, int line) {
329  int linedif = line - fs->previousline;
330  int pc = fs->pc - 1; /* last instruction coded */
331  if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
332  luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
333  f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
334  f->abslineinfo[fs->nabslineinfo].pc = pc;
335  f->abslineinfo[fs->nabslineinfo++].line = line;
336  linedif = ABSLINEINFO; /* signal that there is absolute information */
337  fs->iwthabs = 1; /* restart counter */
338  }
339  luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
340  MAX_INT, "opcodes");
341  f->lineinfo[pc] = linedif;
342  fs->previousline = line; /* last line saved */
343 }
344 
345 
346 /*
347 ** Remove line information from the last instruction.
348 ** If line information for that instruction is absolute, set 'iwthabs'
349 ** above its max to force the new (replacing) instruction to have
350 ** absolute line info, too.
351 */
352 static void removelastlineinfo (FuncState *fs) {
353  Proto *f = fs->f;
354  int pc = fs->pc - 1; /* last instruction coded */
355  if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
356  fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
357  fs->iwthabs--; /* undo previous increment */
358  }
359  else { /* absolute line information */
360  lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
361  fs->nabslineinfo--; /* remove it */
362  fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
363  }
364 }
365 
366 
367 /*
368 ** Remove the last instruction created, correcting line information
369 ** accordingly.
370 */
371 static void removelastinstruction (FuncState *fs) {
372  removelastlineinfo(fs);
373  fs->pc--;
374 }
375 
376 
377 /*
378 ** Emit instruction 'i', checking for array sizes and saving also its
379 ** line information. Return 'i' position.
380 */
382  Proto *f = fs->f;
383  /* put new instruction in code array */
384  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
385  MAX_INT, "opcodes");
386  f->code[fs->pc++] = i;
387  savelineinfo(fs, f, fs->ls->lastline);
388  return fs->pc - 1; /* index of new instruction */
389 }
390 
391 
392 /*
393 ** Format and emit an 'iABC' instruction. (Assertions check consistency
394 ** of parameters versus opcode.)
395 */
396 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
397  lua_assert(getOpMode(o) == iABC);
398  lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
399  c <= MAXARG_C && (k & ~1) == 0);
400  return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
401 }
402 
403 
404 /*
405 ** Format and emit an 'iABx' instruction.
406 */
407 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
408  lua_assert(getOpMode(o) == iABx);
409  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
410  return luaK_code(fs, CREATE_ABx(o, a, bc));
411 }
412 
413 
414 /*
415 ** Format and emit an 'iAsBx' instruction.
416 */
417 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
418  unsigned int b = bc + OFFSET_sBx;
419  lua_assert(getOpMode(o) == iAsBx);
420  lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
421  return luaK_code(fs, CREATE_ABx(o, a, b));
422 }
423 
424 
425 /*
426 ** Format and emit an 'isJ' instruction.
427 */
428 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
429  unsigned int j = sj + OFFSET_sJ;
430  lua_assert(getOpMode(o) == isJ);
431  lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
432  return luaK_code(fs, CREATE_sJ(o, j, k));
433 }
434 
435 
436 /*
437 ** Emit an "extra argument" instruction (format 'iAx')
438 */
439 static int codeextraarg (FuncState *fs, int a) {
440  lua_assert(a <= MAXARG_Ax);
441  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
442 }
443 
444 
445 /*
446 ** Emit a "load constant" instruction, using either 'OP_LOADK'
447 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
448 ** instruction with "extra argument".
449 */
450 static int luaK_codek (FuncState *fs, int reg, int k) {
451  if (k <= MAXARG_Bx)
452  return luaK_codeABx(fs, OP_LOADK, reg, k);
453  else {
454  int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
455  codeextraarg(fs, k);
456  return p;
457  }
458 }
459 
460 
461 /*
462 ** Check register-stack level, keeping track of its maximum size
463 ** in field 'maxstacksize'
464 */
465 void luaK_checkstack (FuncState *fs, int n) {
466  int newstack = fs->freereg + n;
467  if (newstack > fs->f->maxstacksize) {
468  if (newstack >= MAXREGS)
469  luaX_syntaxerror(fs->ls,
470  "function or expression needs too many registers");
471  fs->f->maxstacksize = cast_byte(newstack);
472  }
473 }
474 
475 
476 /*
477 ** Reserve 'n' registers in register stack
478 */
479 void luaK_reserveregs (FuncState *fs, int n) {
480  luaK_checkstack(fs, n);
481  fs->freereg += n;
482 }
483 
484 
485 /*
486 ** Free register 'reg', if it is neither a constant index nor
487 ** a local variable.
488 )
489 */
490 static void freereg (FuncState *fs, int reg) {
491  if (reg >= luaY_nvarstack(fs)) {
492  fs->freereg--;
493  lua_assert(reg == fs->freereg);
494  }
495 }
496 
497 
498 /*
499 ** Free two registers in proper order
500 */
501 static void freeregs (FuncState *fs, int r1, int r2) {
502  if (r1 > r2) {
503  freereg(fs, r1);
504  freereg(fs, r2);
505  }
506  else {
507  freereg(fs, r2);
508  freereg(fs, r1);
509  }
510 }
511 
512 
513 /*
514 ** Free register used by expression 'e' (if any)
515 */
516 static void freeexp (FuncState *fs, expdesc *e) {
517  if (e->k == VNONRELOC)
518  freereg(fs, e->u.info);
519 }
520 
521 
522 /*
523 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
524 ** order.
525 */
526 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
527  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
528  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
529  freeregs(fs, r1, r2);
530 }
531 
532 
533 /*
534 ** Add constant 'v' to prototype's list of constants (field 'k').
535 ** Use scanner's table to cache position of constants in constant list
536 ** and try to reuse constants. Because some values should not be used
537 ** as keys (nil cannot be a key, integer keys can collapse with float
538 ** keys), the caller must provide a useful 'key' for indexing the cache.
539 ** Note that all functions share the same table, so entering or exiting
540 ** a function can make some indices wrong.
541 */
542 static int addk (FuncState *fs, TValue *key, TValue *v) {
543  TValue val;
544  lua_State *L = fs->ls->L;
545  Proto *f = fs->f;
546  const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
547  int k, oldsize;
548  if (ttisinteger(idx)) { /* is there an index there? */
549  k = cast_int(ivalue(idx));
550  /* correct value? (warning: must distinguish floats from integers!) */
551  if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
552  luaV_rawequalobj(&f->k[k], v))
553  return k; /* reuse index */
554  }
555  /* constant not found; create a new entry */
556  oldsize = f->sizek;
557  k = fs->nk;
558  /* numerical value does not need GC barrier;
559  table has no metatable, so it does not need to invalidate cache */
560  setivalue(&val, k);
561  luaH_finishset(L, fs->ls->h, key, idx, &val);
562  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
563  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
564  setobj(L, &f->k[k], v);
565  fs->nk++;
566  luaC_barrier(L, f, v);
567  return k;
568 }
569 
570 
571 /*
572 ** Add a string to list of constants and return its index.
573 */
574 static int stringK (FuncState *fs, TString *s) {
575  TValue o;
576  setsvalue(fs->ls->L, &o, s);
577  return addk(fs, &o, &o); /* use string itself as key */
578 }
579 
580 
581 /*
582 ** Add an integer to list of constants and return its index.
583 ** Integers use userdata as keys to avoid collision with floats with
584 ** same value; conversion to 'void*' is used only for hashing, so there
585 ** are no "precision" problems.
586 */
587 static int luaK_intK (FuncState *fs, lua_Integer n) {
588  TValue k, o;
590  setivalue(&o, n);
591  return addk(fs, &k, &o);
592 }
593 
594 /*
595 ** Add a float to list of constants and return its index.
596 */
597 static int luaK_numberK (FuncState *fs, lua_Number r) {
598  TValue o;
599  setfltvalue(&o, r);
600  return addk(fs, &o, &o); /* use number itself as key */
601 }
602 
603 
604 /*
605 ** Add a false to list of constants and return its index.
606 */
607 static int boolF (FuncState *fs) {
608  TValue o;
609  setbfvalue(&o);
610  return addk(fs, &o, &o); /* use boolean itself as key */
611 }
612 
613 
614 /*
615 ** Add a true to list of constants and return its index.
616 */
617 static int boolT (FuncState *fs) {
618  TValue o;
619  setbtvalue(&o);
620  return addk(fs, &o, &o); /* use boolean itself as key */
621 }
622 
623 
624 /*
625 ** Add nil to list of constants and return its index.
626 */
627 static int nilK (FuncState *fs) {
628  TValue k, v;
629  setnilvalue(&v);
630  /* cannot use nil as key; instead use table itself to represent nil */
631  sethvalue(fs->ls->L, &k, fs->ls->h);
632  return addk(fs, &k, &v);
633 }
634 
635 
636 /*
637 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
638 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
639 ** overflows in the hidden addition inside 'int2sC'.
640 */
641 static int fitsC (lua_Integer i) {
642  return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
643 }
644 
645 
646 /*
647 ** Check whether 'i' can be stored in an 'sBx' operand.
648 */
649 static int fitsBx (lua_Integer i) {
650  return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
651 }
652 
653 
654 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
655  if (fitsBx(i))
656  luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
657  else
658  luaK_codek(fs, reg, luaK_intK(fs, i));
659 }
660 
661 
662 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
663  lua_Integer fi;
664  if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
665  luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
666  else
667  luaK_codek(fs, reg, luaK_numberK(fs, f));
668 }
669 
670 
671 /*
672 ** Convert a constant in 'v' into an expression description 'e'
673 */
674 static void const2exp (TValue *v, expdesc *e) {
675  switch (ttypetag(v)) {
676  case LUA_VNUMINT:
677  e->k = VKINT; e->u.ival = ivalue(v);
678  break;
679  case LUA_VNUMFLT:
680  e->k = VKFLT; e->u.nval = fltvalue(v);
681  break;
682  case LUA_VFALSE:
683  e->k = VFALSE;
684  break;
685  case LUA_VTRUE:
686  e->k = VTRUE;
687  break;
688  case LUA_VNIL:
689  e->k = VNIL;
690  break;
691  case LUA_VSHRSTR: case LUA_VLNGSTR:
692  e->k = VKSTR; e->u.strval = tsvalue(v);
693  break;
694  default: lua_assert(0);
695  }
696 }
697 
698 
699 /*
700 ** Fix an expression to return the number of results 'nresults'.
701 ** 'e' must be a multi-ret expression (function call or vararg).
702 */
703 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
704  Instruction *pc = &getinstruction(fs, e);
705  if (e->k == VCALL) /* expression is an open function call? */
706  SETARG_C(*pc, nresults + 1);
707  else {
708  lua_assert(e->k == VVARARG);
709  SETARG_C(*pc, nresults + 1);
710  SETARG_A(*pc, fs->freereg);
711  luaK_reserveregs(fs, 1);
712  }
713 }
714 
715 
716 /*
717 ** Convert a VKSTR to a VK
718 */
719 static void str2K (FuncState *fs, expdesc *e) {
720  lua_assert(e->k == VKSTR);
721  e->u.info = stringK(fs, e->u.strval);
722  e->k = VK;
723 }
724 
725 
726 /*
727 ** Fix an expression to return one result.
728 ** If expression is not a multi-ret expression (function call or
729 ** vararg), it already returns one result, so nothing needs to be done.
730 ** Function calls become VNONRELOC expressions (as its result comes
731 ** fixed in the base register of the call), while vararg expressions
732 ** become VRELOC (as OP_VARARG puts its results where it wants).
733 ** (Calls are created returning one result, so that does not need
734 ** to be fixed.)
735 */
737  if (e->k == VCALL) { /* expression is an open function call? */
738  /* already returns 1 value */
739  lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
740  e->k = VNONRELOC; /* result has fixed position */
741  e->u.info = GETARG_A(getinstruction(fs, e));
742  }
743  else if (e->k == VVARARG) {
744  SETARG_C(getinstruction(fs, e), 2);
745  e->k = VRELOC; /* can relocate its simple result */
746  }
747 }
748 
749 
750 /*
751 ** Ensure that expression 'e' is not a variable (nor a <const>).
752 ** (Expression still may have jump lists.)
753 */
755  switch (e->k) {
756  case VCONST: {
757  const2exp(const2val(fs, e), e);
758  break;
759  }
760  case VLOCAL: { /* already in a register */
761  e->u.info = e->u.var.ridx;
762  e->k = VNONRELOC; /* becomes a non-relocatable value */
763  break;
764  }
765  case VUPVAL: { /* move value to some (pending) register */
766  e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
767  e->k = VRELOC;
768  break;
769  }
770  case VINDEXUP: {
771  e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
772  e->k = VRELOC;
773  break;
774  }
775  case VINDEXI: {
776  freereg(fs, e->u.ind.t);
777  e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
778  e->k = VRELOC;
779  break;
780  }
781  case VINDEXSTR: {
782  freereg(fs, e->u.ind.t);
783  e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
784  e->k = VRELOC;
785  break;
786  }
787  case VINDEXED: {
788  freeregs(fs, e->u.ind.t, e->u.ind.idx);
789  e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
790  e->k = VRELOC;
791  break;
792  }
793  case VVARARG: case VCALL: {
794  luaK_setoneret(fs, e);
795  break;
796  }
797  default: break; /* there is one value available (somewhere) */
798  }
799 }
800 
801 
802 /*
803 ** Ensure expression value is in register 'reg', making 'e' a
804 ** non-relocatable expression.
805 ** (Expression still may have jump lists.)
806 */
807 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
808  luaK_dischargevars(fs, e);
809  switch (e->k) {
810  case VNIL: {
811  luaK_nil(fs, reg, 1);
812  break;
813  }
814  case VFALSE: {
815  luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
816  break;
817  }
818  case VTRUE: {
819  luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
820  break;
821  }
822  case VKSTR: {
823  str2K(fs, e);
824  } /* FALLTHROUGH */
825  case VK: {
826  luaK_codek(fs, reg, e->u.info);
827  break;
828  }
829  case VKFLT: {
830  luaK_float(fs, reg, e->u.nval);
831  break;
832  }
833  case VKINT: {
834  luaK_int(fs, reg, e->u.ival);
835  break;
836  }
837  case VRELOC: {
838  Instruction *pc = &getinstruction(fs, e);
839  SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
840  break;
841  }
842  case VNONRELOC: {
843  if (reg != e->u.info)
844  luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
845  break;
846  }
847  default: {
848  lua_assert(e->k == VJMP);
849  return; /* nothing to do... */
850  }
851  }
852  e->u.info = reg;
853  e->k = VNONRELOC;
854 }
855 
856 
857 /*
858 ** Ensure expression value is in a register, making 'e' a
859 ** non-relocatable expression.
860 ** (Expression still may have jump lists.)
861 */
862 static void discharge2anyreg (FuncState *fs, expdesc *e) {
863  if (e->k != VNONRELOC) { /* no fixed register yet? */
864  luaK_reserveregs(fs, 1); /* get a register */
865  discharge2reg(fs, e, fs->freereg-1); /* put value there */
866  }
867 }
868 
869 
870 static int code_loadbool (FuncState *fs, int A, OpCode op) {
871  luaK_getlabel(fs); /* those instructions may be jump targets */
872  return luaK_codeABC(fs, op, A, 0, 0);
873 }
874 
875 
876 /*
877 ** check whether list has any jump that do not produce a value
878 ** or produce an inverted value
879 */
880 static int need_value (FuncState *fs, int list) {
881  for (; list != NO_JUMP; list = getjump(fs, list)) {
882  Instruction i = *getjumpcontrol(fs, list);
883  if (GET_OPCODE(i) != OP_TESTSET) return 1;
884  }
885  return 0; /* not found */
886 }
887 
888 
889 /*
890 ** Ensures final expression result (which includes results from its
891 ** jump lists) is in register 'reg'.
892 ** If expression has jumps, need to patch these jumps either to
893 ** its final position or to "load" instructions (for those tests
894 ** that do not produce values).
895 */
896 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
897  discharge2reg(fs, e, reg);
898  if (e->k == VJMP) /* expression itself is a test? */
899  luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
900  if (hasjumps(e)) {
901  int final; /* position after whole expression */
902  int p_f = NO_JUMP; /* position of an eventual LOAD false */
903  int p_t = NO_JUMP; /* position of an eventual LOAD true */
904  if (need_value(fs, e->t) || need_value(fs, e->f)) {
905  int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
906  p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
907  p_t = code_loadbool(fs, reg, OP_LOADTRUE);
908  /* jump around these booleans if 'e' is not a test */
909  luaK_patchtohere(fs, fj);
910  }
911  final = luaK_getlabel(fs);
912  patchlistaux(fs, e->f, final, reg, p_f);
913  patchlistaux(fs, e->t, final, reg, p_t);
914  }
915  e->f = e->t = NO_JUMP;
916  e->u.info = reg;
917  e->k = VNONRELOC;
918 }
919 
920 
921 /*
922 ** Ensures final expression result is in next available register.
923 */
925  luaK_dischargevars(fs, e);
926  freeexp(fs, e);
927  luaK_reserveregs(fs, 1);
928  exp2reg(fs, e, fs->freereg - 1);
929 }
930 
931 
932 /*
933 ** Ensures final expression result is in some (any) register
934 ** and return that register.
935 */
937  luaK_dischargevars(fs, e);
938  if (e->k == VNONRELOC) { /* expression already has a register? */
939  if (!hasjumps(e)) /* no jumps? */
940  return e->u.info; /* result is already in a register */
941  if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
942  exp2reg(fs, e, e->u.info); /* put final result in it */
943  return e->u.info;
944  }
945  /* else expression has jumps and cannot change its register
946  to hold the jump values, because it is a local variable.
947  Go through to the default case. */
948  }
949  luaK_exp2nextreg(fs, e); /* default: use next available register */
950  return e->u.info;
951 }
952 
953 
954 /*
955 ** Ensures final expression result is either in a register
956 ** or in an upvalue.
957 */
959  if (e->k != VUPVAL || hasjumps(e))
960  luaK_exp2anyreg(fs, e);
961 }
962 
963 
964 /*
965 ** Ensures final expression result is either in a register
966 ** or it is a constant.
967 */
969  if (hasjumps(e))
970  luaK_exp2anyreg(fs, e);
971  else
972  luaK_dischargevars(fs, e);
973 }
974 
975 
976 /*
977 ** Try to make 'e' a K expression with an index in the range of R/K
978 ** indices. Return true iff succeeded.
979 */
980 static int luaK_exp2K (FuncState *fs, expdesc *e) {
981  if (!hasjumps(e)) {
982  int info;
983  switch (e->k) { /* move constants to 'k' */
984  case VTRUE: info = boolT(fs); break;
985  case VFALSE: info = boolF(fs); break;
986  case VNIL: info = nilK(fs); break;
987  case VKINT: info = luaK_intK(fs, e->u.ival); break;
988  case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
989  case VKSTR: info = stringK(fs, e->u.strval); break;
990  case VK: info = e->u.info; break;
991  default: return 0; /* not a constant */
992  }
993  if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
994  e->k = VK; /* make expression a 'K' expression */
995  e->u.info = info;
996  return 1;
997  }
998  }
999  /* else, expression doesn't fit; leave it unchanged */
1000  return 0;
1001 }
1002 
1003 
1004 /*
1005 ** Ensures final expression result is in a valid R/K index
1006 ** (that is, it is either in a register or in 'k' with an index
1007 ** in the range of R/K indices).
1008 ** Returns 1 iff expression is K.
1009 */
1011  if (luaK_exp2K(fs, e))
1012  return 1;
1013  else { /* not a constant in the right range: put it in a register */
1014  luaK_exp2anyreg(fs, e);
1015  return 0;
1016  }
1017 }
1018 
1019 
1020 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1021  expdesc *ec) {
1022  int k = luaK_exp2RK(fs, ec);
1023  luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1024 }
1025 
1026 
1027 /*
1028 ** Generate code to store result of expression 'ex' into variable 'var'.
1029 */
1031  switch (var->k) {
1032  case VLOCAL: {
1033  freeexp(fs, ex);
1034  exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
1035  return;
1036  }
1037  case VUPVAL: {
1038  int e = luaK_exp2anyreg(fs, ex);
1039  luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1040  break;
1041  }
1042  case VINDEXUP: {
1043  codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1044  break;
1045  }
1046  case VINDEXI: {
1047  codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1048  break;
1049  }
1050  case VINDEXSTR: {
1051  codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1052  break;
1053  }
1054  case VINDEXED: {
1055  codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1056  break;
1057  }
1058  default: lua_assert(0); /* invalid var kind to store */
1059  }
1060  freeexp(fs, ex);
1061 }
1062 
1063 
1064 /*
1065 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1066 */
1067 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1068  int ereg;
1069  luaK_exp2anyreg(fs, e);
1070  ereg = e->u.info; /* register where 'e' was placed */
1071  freeexp(fs, e);
1072  e->u.info = fs->freereg; /* base register for op_self */
1073  e->k = VNONRELOC; /* self expression has a fixed register */
1074  luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
1075  codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1076  freeexp(fs, key);
1077 }
1078 
1079 
1080 /*
1081 ** Negate condition 'e' (where 'e' is a comparison).
1082 */
1083 static void negatecondition (FuncState *fs, expdesc *e) {
1084  Instruction *pc = getjumpcontrol(fs, e->u.info);
1086  GET_OPCODE(*pc) != OP_TEST);
1087  SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1088 }
1089 
1090 
1091 /*
1092 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1093 ** is true, code will jump if 'e' is true.) Return jump position.
1094 ** Optimize when 'e' is 'not' something, inverting the condition
1095 ** and removing the 'not'.
1096 */
1097 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1098  if (e->k == VRELOC) {
1099  Instruction ie = getinstruction(fs, e);
1100  if (GET_OPCODE(ie) == OP_NOT) {
1101  removelastinstruction(fs); /* remove previous OP_NOT */
1102  return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1103  }
1104  /* else go through */
1105  }
1106  discharge2anyreg(fs, e);
1107  freeexp(fs, e);
1108  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1109 }
1110 
1111 
1112 /*
1113 ** Emit code to go through if 'e' is true, jump otherwise.
1114 */
1116  int pc; /* pc of new jump */
1117  luaK_dischargevars(fs, e);
1118  switch (e->k) {
1119  case VJMP: { /* condition? */
1120  negatecondition(fs, e); /* jump when it is false */
1121  pc = e->u.info; /* save jump position */
1122  break;
1123  }
1124  case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1125  pc = NO_JUMP; /* always true; do nothing */
1126  break;
1127  }
1128  default: {
1129  pc = jumponcond(fs, e, 0); /* jump when false */
1130  break;
1131  }
1132  }
1133  luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
1134  luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
1135  e->t = NO_JUMP;
1136 }
1137 
1138 
1139 /*
1140 ** Emit code to go through if 'e' is false, jump otherwise.
1141 */
1143  int pc; /* pc of new jump */
1144  luaK_dischargevars(fs, e);
1145  switch (e->k) {
1146  case VJMP: {
1147  pc = e->u.info; /* already jump if true */
1148  break;
1149  }
1150  case VNIL: case VFALSE: {
1151  pc = NO_JUMP; /* always false; do nothing */
1152  break;
1153  }
1154  default: {
1155  pc = jumponcond(fs, e, 1); /* jump if true */
1156  break;
1157  }
1158  }
1159  luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
1160  luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
1161  e->f = NO_JUMP;
1162 }
1163 
1164 
1165 /*
1166 ** Code 'not e', doing constant folding.
1167 */
1168 static void codenot (FuncState *fs, expdesc *e) {
1169  switch (e->k) {
1170  case VNIL: case VFALSE: {
1171  e->k = VTRUE; /* true == not nil == not false */
1172  break;
1173  }
1174  case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1175  e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
1176  break;
1177  }
1178  case VJMP: {
1179  negatecondition(fs, e);
1180  break;
1181  }
1182  case VRELOC:
1183  case VNONRELOC: {
1184  discharge2anyreg(fs, e);
1185  freeexp(fs, e);
1186  e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1187  e->k = VRELOC;
1188  break;
1189  }
1190  default: lua_assert(0); /* cannot happen */
1191  }
1192  /* interchange true and false lists */
1193  { int temp = e->f; e->f = e->t; e->t = temp; }
1194  removevalues(fs, e->f); /* values are useless when negated */
1195  removevalues(fs, e->t);
1196 }
1197 
1198 
1199 /*
1200 ** Check whether expression 'e' is a small literal string
1201 */
1202 static int isKstr (FuncState *fs, expdesc *e) {
1203  return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1204  ttisshrstring(&fs->f->k[e->u.info]));
1205 }
1206 
1207 /*
1208 ** Check whether expression 'e' is a literal integer.
1209 */
1211  return (e->k == VKINT && !hasjumps(e));
1212 }
1213 
1214 
1215 /*
1216 ** Check whether expression 'e' is a literal integer in
1217 ** proper range to fit in register C
1218 */
1219 static int isCint (expdesc *e) {
1220  return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1221 }
1222 
1223 
1224 /*
1225 ** Check whether expression 'e' is a literal integer in
1226 ** proper range to fit in register sC
1227 */
1228 static int isSCint (expdesc *e) {
1229  return luaK_isKint(e) && fitsC(e->u.ival);
1230 }
1231 
1232 
1233 /*
1234 ** Check whether expression 'e' is a literal integer or float in
1235 ** proper range to fit in a register (sB or sC).
1236 */
1237 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1238  lua_Integer i;
1239  if (e->k == VKINT)
1240  i = e->u.ival;
1241  else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1242  *isfloat = 1;
1243  else
1244  return 0; /* not a number */
1245  if (!hasjumps(e) && fitsC(i)) {
1246  *pi = int2sC(cast_int(i));
1247  return 1;
1248  }
1249  else
1250  return 0;
1251 }
1252 
1253 
1254 /*
1255 ** Create expression 't[k]'. 't' must have its final result already in a
1256 ** register or upvalue. Upvalues can only be indexed by literal strings.
1257 ** Keys can be literal strings in the constant table or arbitrary
1258 ** values in registers.
1259 */
1261  if (k->k == VKSTR)
1262  str2K(fs, k);
1263  lua_assert(!hasjumps(t) &&
1264  (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1265  if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
1266  luaK_exp2anyreg(fs, t); /* put it in a register */
1267  if (t->k == VUPVAL) {
1268  t->u.ind.t = t->u.info; /* upvalue index */
1269  t->u.ind.idx = k->u.info; /* literal string */
1270  t->k = VINDEXUP;
1271  }
1272  else {
1273  /* register index of the table */
1274  t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1275  if (isKstr(fs, k)) {
1276  t->u.ind.idx = k->u.info; /* literal string */
1277  t->k = VINDEXSTR;
1278  }
1279  else if (isCint(k)) {
1280  t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
1281  t->k = VINDEXI;
1282  }
1283  else {
1284  t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
1285  t->k = VINDEXED;
1286  }
1287  }
1288 }
1289 
1290 
1291 /*
1292 ** Return false if folding can raise an error.
1293 ** Bitwise operations need operands convertible to integers; division
1294 ** operations cannot have 0 as divisor.
1295 */
1296 static int validop (int op, TValue *v1, TValue *v2) {
1297  switch (op) {
1298  case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1299  case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
1300  lua_Integer i;
1301  return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1302  luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1303  }
1304  case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
1305  return (nvalue(v2) != 0);
1306  default: return 1; /* everything else is valid */
1307  }
1308 }
1309 
1310 
1311 /*
1312 ** Try to "constant-fold" an operation; return 1 iff successful.
1313 ** (In this case, 'e1' has the final result.)
1314 */
1315 static int constfolding (FuncState *fs, int op, expdesc *e1,
1316  const expdesc *e2) {
1317  TValue v1, v2, res;
1318  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1319  return 0; /* non-numeric operands or not safe to fold */
1320  luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
1321  if (ttisinteger(&res)) {
1322  e1->k = VKINT;
1323  e1->u.ival = ivalue(&res);
1324  }
1325  else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1326  lua_Number n = fltvalue(&res);
1327  if (luai_numisnan(n) || n == 0)
1328  return 0;
1329  e1->k = VKFLT;
1330  e1->u.nval = n;
1331  }
1332  return 1;
1333 }
1334 
1335 
1336 /*
1337 ** Emit code for unary expressions that "produce values"
1338 ** (everything but 'not').
1339 ** Expression to produce final result will be encoded in 'e'.
1340 */
1341 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1342  int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1343  freeexp(fs, e);
1344  e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1345  e->k = VRELOC; /* all those operations are relocatable */
1346  luaK_fixline(fs, line);
1347 }
1348 
1349 
1350 /*
1351 ** Emit code for binary expressions that "produce values"
1352 ** (everything but logical operators 'and'/'or' and comparison
1353 ** operators).
1354 ** Expression to produce final result will be encoded in 'e1'.
1355 */
1356 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1357  OpCode op, int v2, int flip, int line,
1358  OpCode mmop, TMS event) {
1359  int v1 = luaK_exp2anyreg(fs, e1);
1360  int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1361  freeexps(fs, e1, e2);
1362  e1->u.info = pc;
1363  e1->k = VRELOC; /* all those operations are relocatable */
1364  luaK_fixline(fs, line);
1365  luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
1366  luaK_fixline(fs, line);
1367 }
1368 
1369 
1370 /*
1371 ** Emit code for binary expressions that "produce values" over
1372 ** two registers.
1373 */
1374 static void codebinexpval (FuncState *fs, OpCode op,
1375  expdesc *e1, expdesc *e2, int line) {
1376  int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
1377  lua_assert(OP_ADD <= op && op <= OP_SHR);
1378  finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
1379  cast(TMS, (op - OP_ADD) + TM_ADD));
1380 }
1381 
1382 
1383 /*
1384 ** Code binary operators with immediate operands.
1385 */
1386 static void codebini (FuncState *fs, OpCode op,
1387  expdesc *e1, expdesc *e2, int flip, int line,
1388  TMS event) {
1389  int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
1390  lua_assert(e2->k == VKINT);
1391  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1392 }
1393 
1394 
1395 /* Try to code a binary operator negating its second operand.
1396 ** For the metamethod, 2nd operand must keep its original value.
1397 */
1398 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1399  OpCode op, int line, TMS event) {
1400  if (!luaK_isKint(e2))
1401  return 0; /* not an integer constant */
1402  else {
1403  lua_Integer i2 = e2->u.ival;
1404  if (!(fitsC(i2) && fitsC(-i2)))
1405  return 0; /* not in the proper range */
1406  else { /* operating a small integer constant */
1407  int v2 = cast_int(i2);
1408  finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1409  /* correct metamethod argument */
1410  SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1411  return 1; /* successfully coded */
1412  }
1413  }
1414 }
1415 
1416 
1417 static void swapexps (expdesc *e1, expdesc *e2) {
1418  expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
1419 }
1420 
1421 
1422 /*
1423 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1424 ** constant in the proper range, use variant opcodes with K operands.
1425 */
1426 static void codearith (FuncState *fs, BinOpr opr,
1427  expdesc *e1, expdesc *e2, int flip, int line) {
1428  TMS event = cast(TMS, opr + TM_ADD);
1429  if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */
1430  int v2 = e2->u.info; /* K index */
1431  OpCode op = cast(OpCode, opr + OP_ADDK);
1432  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1433  }
1434  else { /* 'e2' is neither an immediate nor a K operand */
1435  OpCode op = cast(OpCode, opr + OP_ADD);
1436  if (flip)
1437  swapexps(e1, e2); /* back to original order */
1438  codebinexpval(fs, op, e1, e2, line); /* use standard operators */
1439  }
1440 }
1441 
1442 
1443 /*
1444 ** Code commutative operators ('+', '*'). If first operand is a
1445 ** numeric constant, change order of operands to try to use an
1446 ** immediate or K operator.
1447 */
1449  expdesc *e1, expdesc *e2, int line) {
1450  int flip = 0;
1451  if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
1452  swapexps(e1, e2); /* change order */
1453  flip = 1;
1454  }
1455  if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
1456  codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
1457  else
1458  codearith(fs, op, e1, e2, flip, line);
1459 }
1460 
1461 
1462 /*
1463 ** Code bitwise operations; they are all associative, so the function
1464 ** tries to put an integer constant as the 2nd operand (a K operand).
1465 */
1466 static void codebitwise (FuncState *fs, BinOpr opr,
1467  expdesc *e1, expdesc *e2, int line) {
1468  int flip = 0;
1469  int v2;
1470  OpCode op;
1471  if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
1472  swapexps(e1, e2); /* 'e2' will be the constant operand */
1473  flip = 1;
1474  }
1475  else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */
1476  op = cast(OpCode, opr + OP_ADD);
1477  codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */
1478  return;
1479  }
1480  v2 = e2->u.info; /* index in K array */
1481  op = cast(OpCode, opr + OP_ADDK);
1482  lua_assert(ttisinteger(&fs->f->k[v2]));
1483  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
1484  cast(TMS, opr + TM_ADD));
1485 }
1486 
1487 
1488 /*
1489 ** Emit code for order comparisons. When using an immediate operand,
1490 ** 'isfloat' tells whether the original value was a float.
1491 */
1492 static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
1493  int r1, r2;
1494  int im;
1495  int isfloat = 0;
1496  if (isSCnumber(e2, &im, &isfloat)) {
1497  /* use immediate operand */
1498  r1 = luaK_exp2anyreg(fs, e1);
1499  r2 = im;
1500  op = cast(OpCode, (op - OP_LT) + OP_LTI);
1501  }
1502  else if (isSCnumber(e1, &im, &isfloat)) {
1503  /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1504  r1 = luaK_exp2anyreg(fs, e2);
1505  r2 = im;
1506  op = (op == OP_LT) ? OP_GTI : OP_GEI;
1507  }
1508  else { /* regular case, compare two registers */
1509  r1 = luaK_exp2anyreg(fs, e1);
1510  r2 = luaK_exp2anyreg(fs, e2);
1511  }
1512  freeexps(fs, e1, e2);
1513  e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1514  e1->k = VJMP;
1515 }
1516 
1517 
1518 /*
1519 ** Emit code for equality comparisons ('==', '~=').
1520 ** 'e1' was already put as RK by 'luaK_infix'.
1521 */
1522 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1523  int r1, r2;
1524  int im;
1525  int isfloat = 0; /* not needed here, but kept for symmetry */
1526  OpCode op;
1527  if (e1->k != VNONRELOC) {
1528  lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1529  swapexps(e1, e2);
1530  }
1531  r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
1532  if (isSCnumber(e2, &im, &isfloat)) {
1533  op = OP_EQI;
1534  r2 = im; /* immediate operand */
1535  }
1536  else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
1537  op = OP_EQK;
1538  r2 = e2->u.info; /* constant index */
1539  }
1540  else {
1541  op = OP_EQ; /* will compare two registers */
1542  r2 = luaK_exp2anyreg(fs, e2);
1543  }
1544  freeexps(fs, e1, e2);
1545  e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1546  e1->k = VJMP;
1547 }
1548 
1549 
1550 /*
1551 ** Apply prefix operation 'op' to expression 'e'.
1552 */
1553 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1554  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1555  luaK_dischargevars(fs, e);
1556  switch (op) {
1557  case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1558  if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1559  break;
1560  /* else */ /* FALLTHROUGH */
1561  case OPR_LEN:
1562  codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1563  break;
1564  case OPR_NOT: codenot(fs, e); break;
1565  default: lua_assert(0);
1566  }
1567 }
1568 
1569 
1570 /*
1571 ** Process 1st operand 'v' of binary operation 'op' before reading
1572 ** 2nd operand.
1573 */
1575  luaK_dischargevars(fs, v);
1576  switch (op) {
1577  case OPR_AND: {
1578  luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1579  break;
1580  }
1581  case OPR_OR: {
1582  luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1583  break;
1584  }
1585  case OPR_CONCAT: {
1586  luaK_exp2nextreg(fs, v); /* operand must be on the stack */
1587  break;
1588  }
1589  case OPR_ADD: case OPR_SUB:
1590  case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1591  case OPR_MOD: case OPR_POW:
1592  case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1593  case OPR_SHL: case OPR_SHR: {
1594  if (!tonumeral(v, NULL))
1595  luaK_exp2anyreg(fs, v);
1596  /* else keep numeral, which may be folded with 2nd operand */
1597  break;
1598  }
1599  case OPR_EQ: case OPR_NE: {
1600  if (!tonumeral(v, NULL))
1601  luaK_exp2RK(fs, v);
1602  /* else keep numeral, which may be an immediate operand */
1603  break;
1604  }
1605  case OPR_LT: case OPR_LE:
1606  case OPR_GT: case OPR_GE: {
1607  int dummy, dummy2;
1608  if (!isSCnumber(v, &dummy, &dummy2))
1609  luaK_exp2anyreg(fs, v);
1610  /* else keep numeral, which may be an immediate operand */
1611  break;
1612  }
1613  default: lua_assert(0);
1614  }
1615 }
1616 
1617 /*
1618 ** Create code for '(e1 .. e2)'.
1619 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1620 ** because concatenation is right associative), merge both CONCATs.
1621 */
1622 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1623  Instruction *ie2 = previousinstruction(fs);
1624  if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
1625  int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
1626  lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1627  freeexp(fs, e2);
1628  SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
1629  SETARG_B(*ie2, n + 1); /* will concatenate one more element */
1630  }
1631  else { /* 'e2' is not a concatenation */
1632  luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
1633  freeexp(fs, e2);
1634  luaK_fixline(fs, line);
1635  }
1636 }
1637 
1638 
1639 /*
1640 ** Finalize code for binary operation, after reading 2nd operand.
1641 */
1643  expdesc *e1, expdesc *e2, int line) {
1644  luaK_dischargevars(fs, e2);
1645  if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1646  return; /* done by folding */
1647  switch (opr) {
1648  case OPR_AND: {
1649  lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
1650  luaK_concat(fs, &e2->f, e1->f);
1651  *e1 = *e2;
1652  break;
1653  }
1654  case OPR_OR: {
1655  lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
1656  luaK_concat(fs, &e2->t, e1->t);
1657  *e1 = *e2;
1658  break;
1659  }
1660  case OPR_CONCAT: { /* e1 .. e2 */
1661  luaK_exp2nextreg(fs, e2);
1662  codeconcat(fs, e1, e2, line);
1663  break;
1664  }
1665  case OPR_ADD: case OPR_MUL: {
1666  codecommutative(fs, opr, e1, e2, line);
1667  break;
1668  }
1669  case OPR_SUB: {
1670  if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1671  break; /* coded as (r1 + -I) */
1672  /* ELSE */
1673  } /* FALLTHROUGH */
1674  case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1675  codearith(fs, opr, e1, e2, 0, line);
1676  break;
1677  }
1678  case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1679  codebitwise(fs, opr, e1, e2, line);
1680  break;
1681  }
1682  case OPR_SHL: {
1683  if (isSCint(e1)) {
1684  swapexps(e1, e2);
1685  codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
1686  }
1687  else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1688  /* coded as (r1 >> -I) */;
1689  }
1690  else /* regular case (two registers) */
1691  codebinexpval(fs, OP_SHL, e1, e2, line);
1692  break;
1693  }
1694  case OPR_SHR: {
1695  if (isSCint(e2))
1696  codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
1697  else /* regular case (two registers) */
1698  codebinexpval(fs, OP_SHR, e1, e2, line);
1699  break;
1700  }
1701  case OPR_EQ: case OPR_NE: {
1702  codeeq(fs, opr, e1, e2);
1703  break;
1704  }
1705  case OPR_LT: case OPR_LE: {
1706  OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1707  codeorder(fs, op, e1, e2);
1708  break;
1709  }
1710  case OPR_GT: case OPR_GE: {
1711  /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
1712  OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1713  swapexps(e1, e2);
1714  codeorder(fs, op, e1, e2);
1715  break;
1716  }
1717  default: lua_assert(0);
1718  }
1719 }
1720 
1721 
1722 /*
1723 ** Change line information associated with current position, by removing
1724 ** previous info and adding it again with new line.
1725 */
1726 void luaK_fixline (FuncState *fs, int line) {
1727  removelastlineinfo(fs);
1728  savelineinfo(fs, fs->f, line);
1729 }
1730 
1731 
1732 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1733  Instruction *inst = &fs->f->code[pc];
1734  int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
1735  int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
1736  int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
1737  int k = (extra > 0); /* true iff needs extra argument */
1738  *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1739  *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1740 }
1741 
1742 
1743 /*
1744 ** Emit a SETLIST instruction.
1745 ** 'base' is register that keeps table;
1746 ** 'nelems' is #table plus those to be stored now;
1747 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1748 ** table (or LUA_MULTRET to add up to stack top).
1749 */
1750 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1751  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1752  if (tostore == LUA_MULTRET)
1753  tostore = 0;
1754  if (nelems <= MAXARG_C)
1755  luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1756  else {
1757  int extra = nelems / (MAXARG_C + 1);
1758  nelems %= (MAXARG_C + 1);
1759  luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1760  codeextraarg(fs, extra);
1761  }
1762  fs->freereg = base + 1; /* free registers with list values */
1763 }
1764 
1765 
1766 /*
1767 ** return the final target of a jump (skipping jumps to jumps)
1768 */
1769 static int finaltarget (Instruction *code, int i) {
1770  int count;
1771  for (count = 0; count < 100; count++) { /* avoid infinite loops */
1772  Instruction pc = code[i];
1773  if (GET_OPCODE(pc) != OP_JMP)
1774  break;
1775  else
1776  i += GETARG_sJ(pc) + 1;
1777  }
1778  return i;
1779 }
1780 
1781 
1782 /*
1783 ** Do a final pass over the code of a function, doing small peephole
1784 ** optimizations and adjustments.
1785 */
1787  int i;
1788  Proto *p = fs->f;
1789  for (i = 0; i < fs->pc; i++) {
1790  Instruction *pc = &p->code[i];
1791  lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1792  switch (GET_OPCODE(*pc)) {
1793  case OP_RETURN0: case OP_RETURN1: {
1794  if (!(fs->needclose || p->is_vararg))
1795  break; /* no extra work */
1796  /* else use OP_RETURN to do the extra work */
1797  SET_OPCODE(*pc, OP_RETURN);
1798  } /* FALLTHROUGH */
1799  case OP_RETURN: case OP_TAILCALL: {
1800  if (fs->needclose)
1801  SETARG_k(*pc, 1); /* signal that it needs to close */
1802  if (p->is_vararg)
1803  SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
1804  break;
1805  }
1806  case OP_JMP: {
1807  int target = finaltarget(p->code, i);
1808  fixjump(fs, i, target);
1809  break;
1810  }
1811  default: break;
1812  }
1813  }
1814 }
foldbinop
#define foldbinop(op)
Definition: lcode.h:45
luaK_exp2anyreg
int luaK_exp2anyreg(FuncState *fs, expdesc *e)
Definition: lcode.c:936
OPR_GE
@ OPR_GE
Definition: lcode.h:37
VLOCAL
@ VLOCAL
Definition: lparser.h:38
OP_SETLIST
@ OP_SETLIST
Definition: lopcodes.h:300
luaK_codeABCk
int luaK_codeABCk(FuncState *fs, OpCode o, int a, int b, int c, int k)
Definition: lcode.c:396
luaO_rawarith
int luaO_rawarith(lua_State *L, int op, const TValue *p1, const TValue *p2, TValue *res)
Definition: lobject.c:89
luaK_goiffalse
void luaK_goiffalse(FuncState *fs, expdesc *e)
Definition: lcode.c:1142
VJMP
@ VJMP
Definition: lparser.h:55
op
#define op
LUA_OPUNM
#define LUA_OPUNM
Definition: lua.h:217
expdesc::info
int info
Definition: lparser.h:74
lua_assert
#define lua_assert(c)
Definition: lauxlib.h:170
detail::first
auto first(const T &value, const Tail &...) -> const T &
Definition: compile.h:60
luaK_fixline
void luaK_fixline(FuncState *fs, int line)
Definition: lcode.c:1726
ls_byte
signed char ls_byte
Definition: llimits.h:37
previousinstruction
static Instruction * previousinstruction(FuncState *fs)
Definition: lcode.c:115
OPR_AND
@ OPR_AND
Definition: lcode.h:39
VCONST
@ VCONST
Definition: lparser.h:41
TM_SUB
@ TM_SUB
Definition: ltm.h:26
OP_SELF
@ OP_SELF
Definition: lopcodes.h:224
cast_byte
#define cast_byte(i)
Definition: llimits.h:130
l_noret
#define l_noret
Definition: llimits.h:162
cast
#define cast(t, exp)
Definition: llimits.h:123
Proto::numparams
lu_byte numparams
Definition: lobject.h:541
LexState::h
Table * h
Definition: llex.h:74
TString
Definition: lobject.h:373
patchtestreg
static int patchtestreg(FuncState *fs, int node, int reg)
Definition: lcode.c:258
hasjumps
#define hasjumps(e)
Definition: lcode.c:37
LUA_MULTRET
#define LUA_MULTRET
Definition: lua.h:36
VUPVAL
@ VUPVAL
Definition: lparser.h:40
validop
static int validop(int op, TValue *v1, TValue *v2)
Definition: lcode.c:1296
tonumeral
static int tonumeral(const expdesc *e, TValue *v)
Definition: lcode.c:55
GETARG_B
#define GETARG_B(i)
Definition: lopcodes.h:128
isSCint
static int isSCint(expdesc *e)
Definition: lcode.c:1228
freeregs
static void freeregs(FuncState *fs, int r1, int r2)
Definition: lcode.c:501
FuncState::needclose
lu_byte needclose
Definition: lparser.h:162
SETARG_k
#define SETARG_k(i, v)
Definition: lopcodes.h:138
OP_TAILCALL
@ OP_TAILCALL
Definition: lopcodes.h:286
LUA_OPDIV
#define LUA_OPDIV
Definition: lua.h:210
luaK_patchlist
void luaK_patchlist(FuncState *fs, int list, int target)
Definition: lcode.c:305
FuncState::freereg
lu_byte freereg
Definition: lparser.h:160
lcode.h
OP_SHR
@ OP_SHR
Definition: lopcodes.h:255
Proto::code
Instruction * code
Definition: lobject.h:554
OPR_NOT
@ OPR_NOT
Definition: lcode.h:51
VNONRELOC
@ VNONRELOC
Definition: lparser.h:36
OFFSET_sC
#define OFFSET_sC
Definition: lopcodes.h:98
luaK_setlist
void luaK_setlist(FuncState *fs, int base, int nelems, int tostore)
Definition: lcode.c:1750
setsvalue
#define setsvalue(L, obj, x)
Definition: lobject.h:358
OP_ADDI
@ OP_ADDI
Definition: lopcodes.h:226
Token::token
int token
Definition: llex.h:57
OP_GETUPVAL
@ OP_GETUPVAL
Definition: lopcodes.h:209
MAXREGS
#define MAXREGS
Definition: lcode.c:34
FuncState::nabslineinfo
int nabslineinfo
Definition: lparser.h:154
cond
static int cond(LexState *ls)
Definition: lparser.c:1394
s
XmlRpcServer s
GETARG_A
#define GETARG_A(i)
Definition: lopcodes.h:125
discharge2anyreg
static void discharge2anyreg(FuncState *fs, expdesc *e)
Definition: lcode.c:862
isIT
#define isIT(i)
Definition: lopcodes.h:383
ltable.h
MAXARG_B
#define MAXARG_B
Definition: lopcodes.h:96
LUA_OPBAND
#define LUA_OPBAND
Definition: lua.h:212
codeextraarg
static int codeextraarg(FuncState *fs, int a)
Definition: lcode.c:439
Proto::is_vararg
lu_byte is_vararg
Definition: lobject.h:542
CREATE_sJ
#define CREATE_sJ(o, j, k)
Definition: lopcodes.h:169
need_value
static int need_value(FuncState *fs, int list)
Definition: lcode.c:880
expdesc::var
struct expdesc::@7::@9 var
LUA_VNUMINT
#define LUA_VNUMINT
Definition: lobject.h:310
code_loadbool
static int code_loadbool(FuncState *fs, int A, OpCode op)
Definition: lcode.c:870
freeexps
static void freeexps(FuncState *fs, expdesc *e1, expdesc *e2)
Definition: lcode.c:526
OP_CONCAT
@ OP_CONCAT
Definition: lopcodes.h:266
sethvalue
#define sethvalue(L, obj, x)
Definition: lobject.h:671
CREATE_ABx
#define CREATE_ABx(o, a, bc)
Definition: lopcodes.h:162
LUA_VNUMFLT
#define LUA_VNUMFLT
Definition: lobject.h:311
LUA_OPADD
#define LUA_OPADD
Definition: lua.h:205
OP_LOADTRUE
@ OP_LOADTRUE
Definition: lopcodes.h:207
OP_LTI
@ OP_LTI
Definition: lopcodes.h:277
OPR_MOD
@ OPR_MOD
Definition: lcode.h:28
CREATE_Ax
#define CREATE_Ax(o, a)
Definition: lopcodes.h:166
ttisinteger
#define ttisinteger(o)
Definition: lobject.h:315
FuncState::f
Proto * f
Definition: lparser.h:145
cast_uint
#define cast_uint(i)
Definition: llimits.h:129
luaK_exp2K
static int luaK_exp2K(FuncState *fs, expdesc *e)
Definition: lcode.c:980
expdesc::strval
TString * strval
Definition: lparser.h:73
luai_numisnan
#define luai_numisnan(a)
Definition: llimits.h:328
lua_Number
LUA_NUMBER lua_Number
Definition: lua.h:90
TMS
TMS
Definition: ltm.h:18
OPR_GT
@ OPR_GT
Definition: lcode.h:37
OPR_MUL
@ OPR_MUL
Definition: lcode.h:28
LUA_OPBXOR
#define LUA_OPBXOR
Definition: lua.h:214
OPR_SHL
@ OPR_SHL
Definition: lcode.h:32
iABx
@ iABx
Definition: lopcodes.h:32
llex.h
AbsLineInfo
Definition: lobject.h:531
LUA_VFALSE
#define LUA_VFALSE
Definition: lobject.h:226
VKFLT
@ VKFLT
Definition: lparser.h:32
OPR_BOR
@ OPR_BOR
Definition: lcode.h:31
VINDEXED
@ VINDEXED
Definition: lparser.h:43
CREATE_ABCk
#define CREATE_ABCk(o, a, b, c, k)
Definition: lopcodes.h:156
TM_SHL
@ TM_SHL
Definition: ltm.h:35
OPR_LEN
@ OPR_LEN
Definition: lcode.h:51
luaK_infix
void luaK_infix(FuncState *fs, BinOpr op, expdesc *v)
Definition: lcode.c:1574
OP_LOADI
@ OP_LOADI
Definition: lopcodes.h:201
GETARG_k
#define GETARG_k(i)
Definition: lopcodes.h:137
OPR_DIV
@ OPR_DIV
Definition: lcode.h:29
mqtt_test_proto.msg
msg
Definition: mqtt_test_proto.py:43
luaK_posfix
void luaK_posfix(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1642
LexState::L
struct lua_State * L
Definition: llex.h:71
OP_LOADF
@ OP_LOADF
Definition: lopcodes.h:202
cast_voidp
#define cast_voidp(i)
Definition: llimits.h:126
str2K
static void str2K(FuncState *fs, expdesc *e)
Definition: lcode.c:719
swapexps
static void swapexps(expdesc *e1, expdesc *e2)
Definition: lcode.c:1417
LFIELDS_PER_FLUSH
#define LFIELDS_PER_FLUSH
Definition: lopcodes.h:390
codeorder
static void codeorder(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2)
Definition: lcode.c:1492
constfolding
static int constfolding(FuncState *fs, int op, expdesc *e1, const expdesc *e2)
Definition: lcode.c:1315
FuncState
Definition: lparser.h:144
OP_LOADFALSE
@ OP_LOADFALSE
Definition: lopcodes.h:205
OP_UNM
@ OP_UNM
Definition: lopcodes.h:261
luaK_exp2RK
int luaK_exp2RK(FuncState *fs, expdesc *e)
Definition: lcode.c:1010
OP_MOVE
@ OP_MOVE
Definition: lopcodes.h:200
getjumpcontrol
static Instruction * getjumpcontrol(FuncState *fs, int pc)
Definition: lcode.c:242
GETARG_sJ
#define GETARG_sJ(i)
Definition: lopcodes.h:150
OPR_EQ
@ OPR_EQ
Definition: lcode.h:36
f
f
luaV_rawequalobj
#define luaV_rawequalobj(t1, t2)
Definition: lvm.h:75
freeexp
static void freeexp(FuncState *fs, expdesc *e)
Definition: lcode.c:516
setnilvalue
#define setnilvalue(obj)
Definition: lobject.h:187
lua.h
OP_GETI
@ OP_GETI
Definition: lopcodes.h:214
VNIL
@ VNIL
Definition: lparser.h:28
OPR_ADD
@ OPR_ADD
Definition: lcode.h:28
MAXARG_Bx
#define MAXARG_Bx
Definition: lopcodes.h:74
TM_SHR
@ TM_SHR
Definition: ltm.h:36
fltvalue
#define fltvalue(o)
Definition: lobject.h:319
luaK_code
int luaK_code(FuncState *fs, Instruction i)
Definition: lcode.c:381
SETARG_C
#define SETARG_C(i, v)
Definition: lopcodes.h:134
OPR_SUB
@ OPR_SUB
Definition: lcode.h:28
jumponcond
static int jumponcond(FuncState *fs, expdesc *e, int cond)
Definition: lcode.c:1097
dummy
int dummy
Definition: lstrlib.c:1350
codebini
static void codebini(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int flip, int line, TMS event)
Definition: lcode.c:1386
SET_OPCODE
#define SET_OPCODE(i, o)
Definition: lopcodes.h:115
codebitwise
static void codebitwise(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1466
OP_NOT
@ OP_NOT
Definition: lopcodes.h:263
detail::count
constexpr auto count() -> size_t
Definition: core.h:1222
luaK_intK
static int luaK_intK(FuncState *fs, lua_Integer n)
Definition: lcode.c:587
nilK
static int nilK(FuncState *fs)
Definition: lcode.c:627
luaK_jump
int luaK_jump(FuncState *fs)
Definition: lcode.c:198
ivalue
#define ivalue(o)
Definition: lobject.h:320
codeABRK
static void codeABRK(FuncState *fs, OpCode o, int a, int b, expdesc *ec)
Definition: lcode.c:1020
setbfvalue
#define setbfvalue(obj)
Definition: lobject.h:237
OP_SETI
@ OP_SETI
Definition: lopcodes.h:219
LUA_OPIDIV
#define LUA_OPIDIV
Definition: lua.h:211
luaK_codeAsBx
int luaK_codeAsBx(FuncState *fs, OpCode o, int a, int bc)
Definition: lcode.c:417
luaK_exp2anyregup
void luaK_exp2anyregup(FuncState *fs, expdesc *e)
Definition: lcode.c:958
expdesc::ind
struct expdesc::@7::@8 ind
luaK_patchtohere
void luaK_patchtohere(FuncState *fs, int list)
Definition: lcode.c:311
sol::var
auto var(V &&v)
Definition: sol.hpp:18020
expdesc::f
int f
Definition: lparser.h:85
codeconcat
static void codeconcat(FuncState *fs, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1622
OP_EXTRAARG
@ OP_EXTRAARG
Definition: lopcodes.h:308
OP_GEI
@ OP_GEI
Definition: lopcodes.h:280
luaX_syntaxerror
l_noret luaX_syntaxerror(LexState *ls, const char *msg)
Definition: llex.c:119
luaK_int
void luaK_int(FuncState *fs, int reg, lua_Integer i)
Definition: lcode.c:654
OP_MMBINI
@ OP_MMBINI
Definition: lopcodes.h:258
luaK_storevar
void luaK_storevar(FuncState *fs, expdesc *var, expdesc *ex)
Definition: lcode.c:1030
OP_RETURN0
@ OP_RETURN0
Definition: lopcodes.h:289
luaO_ceillog2
int luaO_ceillog2(unsigned int x)
Definition: lobject.c:35
OPR_IDIV
@ OPR_IDIV
Definition: lcode.h:29
FuncState::ls
struct LexState * ls
Definition: lparser.h:147
lvm.h
luaH_get
const TValue * luaH_get(Table *t, const TValue *key)
Definition: ltable.c:777
LUA_VLNGSTR
#define LUA_VLNGSTR
Definition: lobject.h:348
LUA_VSHRSTR
#define LUA_VSHRSTR
Definition: lobject.h:347
VTRUE
@ VTRUE
Definition: lparser.h:29
SETARG_A
#define SETARG_A(i, v)
Definition: lopcodes.h:126
LUA_OPMOD
#define LUA_OPMOD
Definition: lua.h:208
lprefix.h
OP_SETTABLE
@ OP_SETTABLE
Definition: lopcodes.h:218
LUA_VTRUE
#define LUA_VTRUE
Definition: lobject.h:227
setpvalue
#define setpvalue(obj, x)
Definition: lobject.h:428
OP_SHRI
@ OP_SHRI
Definition: lopcodes.h:240
ldebug.h
luaV_flttointeger
int luaV_flttointeger(lua_Number n, lua_Integer *p, F2Imod mode)
Definition: lvm.c:121
VINDEXUP
@ VINDEXUP
Definition: lparser.h:46
VK
@ VK
Definition: lparser.h:31
lua_State
Definition: lstate.h:304
FuncState::previousline
int previousline
Definition: lparser.h:151
setobj
#define setobj(L, obj1, obj2)
Definition: lobject.h:116
TM_ADD
@ TM_ADD
Definition: ltm.h:25
LIMLINEDIFF
#define LIMLINEDIFF
Definition: lcode.c:318
OP_ADD
@ OP_ADD
Definition: lopcodes.h:243
testTMode
#define testTMode(m)
Definition: lopcodes.h:372
VFALSE
@ VFALSE
Definition: lparser.h:30
OP_EQK
@ OP_EQK
Definition: lopcodes.h:275
LUA_VNIL
#define LUA_VNIL
Definition: lobject.h:170
OPR_CONCAT
@ OPR_CONCAT
Definition: lcode.h:34
expdesc::k
expkind k
Definition: lparser.h:69
OP_SHLI
@ OP_SHLI
Definition: lopcodes.h:241
const2exp
static void const2exp(TValue *v, expdesc *e)
Definition: lcode.c:674
F2Ieq
@ F2Ieq
Definition: lvm.h:44
FuncState::iwthabs
lu_byte iwthabs
Definition: lparser.h:161
OFFSET_sBx
#define OFFSET_sBx
Definition: lopcodes.h:77
VINDEXSTR
@ VINDEXSTR
Definition: lparser.h:52
OP_EQI
@ OP_EQI
Definition: lopcodes.h:276
FuncState::nk
int nk
Definition: lparser.h:152
Proto
Definition: lobject.h:539
OP_LOADK
@ OP_LOADK
Definition: lopcodes.h:203
VRELOC
@ VRELOC
Definition: lparser.h:57
expdesc::ival
lua_Integer ival
Definition: lparser.h:71
luaK_ret
void luaK_ret(FuncState *fs, int first, int nret)
Definition: lcode.c:206
VKSTR
@ VKSTR
Definition: lparser.h:34
luaK_settablesize
void luaK_settablesize(FuncState *fs, int pc, int ra, int asize, int hsize)
Definition: lcode.c:1732
MAXARG_C
#define MAXARG_C
Definition: lopcodes.h:97
lobject.h
FuncState::lasttarget
int lasttarget
Definition: lparser.h:150
SETARG_sJ
#define SETARG_sJ(i, j)
Definition: lopcodes.h:152
finaltarget
static int finaltarget(Instruction *code, int i)
Definition: lcode.c:1769
lua_Integer
LUA_INTEGER lua_Integer
Definition: lua.h:94
OPR_MINUS
@ OPR_MINUS
Definition: lcode.h:51
LUA_FLOORN2I
#define LUA_FLOORN2I
Definition: lvm.h:36
MAXARG_Ax
#define MAXARG_Ax
Definition: lopcodes.h:83
discharge2reg
static void discharge2reg(FuncState *fs, expdesc *e, int reg)
Definition: lcode.c:807
lparser.h
finishbinexpval
static void finishbinexpval(FuncState *fs, expdesc *e1, expdesc *e2, OpCode op, int v2, int flip, int line, OpCode mmop, TMS event)
Definition: lcode.c:1356
Vardesc::k
TValue k
Definition: lparser.h:104
luaK_exp2val
void luaK_exp2val(FuncState *fs, expdesc *e)
Definition: lcode.c:968
OPR_BXOR
@ OPR_BXOR
Definition: lcode.h:31
OPR_BNOT
@ OPR_BNOT
Definition: lcode.h:51
luaK_nil
void luaK_nil(FuncState *fs, int from, int n)
Definition: lcode.c:130
ttypetag
#define ttypetag(o)
Definition: lobject.h:82
l_castS2U
#define l_castS2U(i)
Definition: llimits.h:139
iABC
@ iABC
Definition: lopcodes.h:32
boolT
static int boolT(FuncState *fs)
Definition: lcode.c:617
expdesc
Definition: lparser.h:68
boolF
static int boolF(FuncState *fs)
Definition: lcode.c:607
luaK_getlabel
int luaK_getlabel(FuncState *fs)
Definition: lcode.c:231
int2sC
#define int2sC(i)
Definition: lopcodes.h:100
cast_sizet
#define cast_sizet(i)
Definition: llimits.h:134
codesJ
static int codesJ(FuncState *fs, OpCode o, int sj, int k)
Definition: lcode.c:428
luaM_growvector
#define luaM_growvector(L, v, nelems, size, t, limit, e)
Definition: lmem.h:66
Dyndata::arr
Vardesc * arr
Definition: lparser.h:130
tsvalue
#define tsvalue(o)
Definition: lobject.h:356
dest
char * dest
Definition: lz4.h:765
OPR_LE
@ OPR_LE
Definition: lcode.h:36
OP_GETFIELD
@ OP_GETFIELD
Definition: lopcodes.h:215
codeeq
static void codeeq(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2)
Definition: lcode.c:1522
BinOpr
BinOpr
Definition: lcode.h:26
getjump
static int getjump(FuncState *fs, int pc)
Definition: lcode.c:153
FuncState::pc
int pc
Definition: lparser.h:149
Instruction
l_uint32 Instruction
Definition: llimits.h:178
negatecondition
static void negatecondition(FuncState *fs, expdesc *e)
Definition: lcode.c:1083
codecommutative
static void codecommutative(FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1448
luaK_checkstack
void luaK_checkstack(FuncState *fs, int n)
Definition: lcode.c:465
isJ
@ isJ
Definition: lopcodes.h:32
Proto::k
TValue * k
Definition: lobject.h:553
LexState::t
Token t
Definition: llex.h:68
OpCode
OpCode
Definition: lopcodes.h:196
OP_TESTSET
@ OP_TESTSET
Definition: lopcodes.h:283
luaK_float
static void luaK_float(FuncState *fs, int reg, lua_Number f)
Definition: lcode.c:662
LexState
Definition: llex.h:64
OP_LOADKX
@ OP_LOADKX
Definition: lopcodes.h:204
SETARG_B
#define SETARG_B(i, v)
Definition: lopcodes.h:130
OP_SETFIELD
@ OP_SETFIELD
Definition: lopcodes.h:220
luaK_numberK
static int luaK_numberK(FuncState *fs, lua_Number r)
Definition: lcode.c:597
getOpMode
#define getOpMode(m)
Definition: lopcodes.h:370
setivalue
#define setivalue(obj, x)
Definition: lobject.h:331
luaK_prefix
void luaK_prefix(FuncState *fs, UnOpr op, expdesc *e, int line)
Definition: lcode.c:1553
VKINT
@ VKINT
Definition: lparser.h:33
exp2reg
static void exp2reg(FuncState *fs, expdesc *e, int reg)
Definition: lcode.c:896
condjump
static int condjump(FuncState *fs, OpCode op, int A, int B, int C, int k)
Definition: lcode.c:221
OPR_POW
@ OPR_POW
Definition: lcode.h:28
luaK_setoneret
void luaK_setoneret(FuncState *fs, expdesc *e)
Definition: lcode.c:736
OP_TEST
@ OP_TEST
Definition: lopcodes.h:282
GET_OPCODE
#define GET_OPCODE(i)
Definition: lopcodes.h:114
luaK_exp2const
int luaK_exp2const(FuncState *fs, const expdesc *e, TValue *v)
Definition: lcode.c:83
VCALL
@ VCALL
Definition: lparser.h:59
OPR_SHR
@ OPR_SHR
Definition: lcode.h:32
isKstr
static int isKstr(FuncState *fs, expdesc *e)
Definition: lcode.c:1202
addk
static int addk(FuncState *fs, TValue *key, TValue *v)
Definition: lcode.c:542
C
#define C(name, bit)
Definition: zstd.c:4811
luaK_codek
static int luaK_codek(FuncState *fs, int reg, int k)
Definition: lcode.c:450
luaY_nvarstack
int luaY_nvarstack(FuncState *fs)
Definition: lparser.c:243
luaV_tointegerns
int luaV_tointegerns(const TValue *obj, lua_Integer *p, F2Imod mode)
Definition: lvm.c:137
MAX_INT
#define MAX_INT
Definition: llimits.h:53
luaK_isKint
int luaK_isKint(expdesc *e)
Definition: lcode.c:1210
removevalues
static void removevalues(FuncState *fs, int list)
Definition: lcode.c:276
MAXARG_sJ
#define MAXARG_sJ
Definition: lopcodes.h:89
VVARARG
@ VVARARG
Definition: lparser.h:60
OP_MMBINK
@ OP_MMBINK
Definition: lopcodes.h:259
B
#define B(name, bit)
luaK_indexed
void luaK_indexed(FuncState *fs, expdesc *t, expdesc *k)
Definition: lcode.c:1260
lstring.h
luaK_setreturns
void luaK_setreturns(FuncState *fs, expdesc *e, int nresults)
Definition: lcode.c:703
codebinexpval
static void codebinexpval(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int line)
Definition: lcode.c:1374
OPR_LT
@ OPR_LT
Definition: lcode.h:36
isSCnumber
static int isSCnumber(expdesc *e, int *pi, int *isfloat)
Definition: lcode.c:1237
OP_MMBIN
@ OP_MMBIN
Definition: lopcodes.h:257
removelastlineinfo
static void removelastlineinfo(FuncState *fs)
Definition: lcode.c:352
isCint
static int isCint(expdesc *e)
Definition: lcode.c:1219
freereg
static void freereg(FuncState *fs, int reg)
Definition: lcode.c:490
isOT
#define isOT(i)
Definition: lopcodes.h:378
OP_JMP
@ OP_JMP
Definition: lopcodes.h:270
OP_ADDK
@ OP_ADDK
Definition: lopcodes.h:228
NO_REG
#define NO_REG
Definition: lopcodes.h:182
luaK_finish
void luaK_finish(FuncState *fs)
Definition: lcode.c:1786
luaK_dischargevars
void luaK_dischargevars(FuncState *fs, expdesc *e)
Definition: lcode.c:754
luaK_concat
void luaK_concat(FuncState *fs, int *l1, int l2)
Definition: lcode.c:180
fitsC
static int fitsC(lua_Integer i)
Definition: lcode.c:641
VINDEXI
@ VINDEXI
Definition: lparser.h:49
OP_GETTABLE
@ OP_GETTABLE
Definition: lopcodes.h:213
OP_GETTABUP
@ OP_GETTABUP
Definition: lopcodes.h:212
lmem.h
const2val
static TValue * const2val(FuncState *fs, const expdesc *e)
Definition: lcode.c:73
expdesc::nval
lua_Number nval
Definition: lparser.h:72
setfltvalue
#define setfltvalue(obj, x)
Definition: lobject.h:325
luaK_goiftrue
void luaK_goiftrue(FuncState *fs, expdesc *e)
Definition: lcode.c:1115
lgc.h
LUA_OPSHR
#define LUA_OPSHR
Definition: lua.h:216
codenot
static void codenot(FuncState *fs, expdesc *e)
Definition: lcode.c:1168
fitsBx
static int fitsBx(lua_Integer i)
Definition: lcode.c:649
finishbinexpneg
static int finishbinexpneg(FuncState *fs, expdesc *e1, expdesc *e2, OpCode op, int line, TMS event)
Definition: lcode.c:1398
expdesc::u
union expdesc::@7 u
luaK_semerror
l_noret luaK_semerror(LexState *ls, const char *msg)
Definition: lcode.c:45
UnOpr
UnOpr
Definition: lcode.h:51
OP_EQ
@ OP_EQ
Definition: lopcodes.h:271
OPR_OR
@ OPR_OR
Definition: lcode.h:39
OP_LFALSESKIP
@ OP_LFALSESKIP
Definition: lopcodes.h:206
OPR_BAND
@ OPR_BAND
Definition: lcode.h:31
OFFSET_sJ
#define OFFSET_sJ
Definition: lopcodes.h:92
LUA_OPBOR
#define LUA_OPBOR
Definition: lua.h:213
codearith
static void codearith(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int flip, int line)
Definition: lcode.c:1426
setbtvalue
#define setbtvalue(obj)
Definition: lobject.h:238
OPR_NE
@ OPR_NE
Definition: lcode.h:37
MAXIWTHABS
#define MAXIWTHABS
Definition: ldebug.h:35
luaK_codeABC
#define luaK_codeABC(fs, o, a, b, c)
Definition: lcode.h:48
next
#define next(ls)
Definition: llex.c:32
luaK_reserveregs
void luaK_reserveregs(FuncState *fs, int n)
Definition: lcode.c:479
LUA_OPSHL
#define LUA_OPSHL
Definition: lua.h:215
nvalue
#define nvalue(o)
Definition: lobject.h:317
luaK_codeABx
int luaK_codeABx(FuncState *fs, OpCode o, int a, unsigned int bc)
Definition: lcode.c:407
expdesc::t
lu_byte t
Definition: lparser.h:77
iAsBx
@ iAsBx
Definition: lopcodes.h:32
luaK_self
void luaK_self(FuncState *fs, expdesc *e, expdesc *key)
Definition: lcode.c:1067
GETARG_C
#define GETARG_C(i)
Definition: lopcodes.h:132
luaH_finishset
void luaH_finishset(lua_State *L, Table *t, const TValue *key, const TValue *slot, TValue *value)
Definition: ltable.c:800
OP_LT
@ OP_LT
Definition: lopcodes.h:272
LexState::lastline
int lastline
Definition: llex.h:67
MAXARG_A
#define MAXARG_A
Definition: lopcodes.h:95
OP_NEWTABLE
@ OP_NEWTABLE
Definition: lopcodes.h:222
LUA_OPBNOT
#define LUA_OPBNOT
Definition: lua.h:218
fixjump
static void fixjump(FuncState *fs, int pc, int dest)
Definition: lcode.c:166
OP_RETURN1
@ OP_RETURN1
Definition: lopcodes.h:290
removelastinstruction
static void removelastinstruction(FuncState *fs)
Definition: lcode.c:371
savelineinfo
static void savelineinfo(FuncState *fs, Proto *f, int line)
Definition: lcode.c:328
OP_SETUPVAL
@ OP_SETUPVAL
Definition: lopcodes.h:210
luaC_barrier
#define luaC_barrier(L, p, v)
Definition: lgc.h:165
LexState::dyd
struct Dyndata * dyd
Definition: llex.h:75
getinstruction
#define getinstruction(fs, e)
Definition: lcode.h:55
OP_LOADNIL
@ OP_LOADNIL
Definition: lopcodes.h:208
OP_SHL
@ OP_SHL
Definition: lopcodes.h:254
lopcodes.h
patchlistaux
static void patchlistaux(FuncState *fs, int list, int vtarget, int reg, int dtarget)
Definition: lcode.c:287
ABSLINEINFO
#define ABSLINEINFO
Definition: ldebug.h:27
NO_JUMP
#define NO_JUMP
Definition: lcode.h:20
OP_SETTABUP
@ OP_SETTABUP
Definition: lopcodes.h:217
codeunexpval
static void codeunexpval(FuncState *fs, OpCode op, expdesc *e, int line)
Definition: lcode.c:1341
Proto::maxstacksize
lu_byte maxstacksize
Definition: lobject.h:543
stringK
static int stringK(FuncState *fs, TString *s)
Definition: lcode.c:574
ldo.h
luaK_exp2nextreg
void luaK_exp2nextreg(FuncState *fs, expdesc *e)
Definition: lcode.c:924
ttisshrstring
#define ttisshrstring(o)
Definition: lobject.h:351
OP_RETURN
@ OP_RETURN
Definition: lopcodes.h:288
TValue
Definition: lobject.h:65
cast_int
#define cast_int(i)
Definition: llimits.h:128
OP_GTI
@ OP_GTI
Definition: lopcodes.h:279
Dyndata::actvar
struct Dyndata::@11 actvar
MAXINDEXRK
#define MAXINDEXRK
Definition: lopcodes.h:175


plotjuggler
Author(s): Davide Faconti
autogenerated on Mon Nov 11 2024 03:23:44