Classes | Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Eigen::MatrixBase< Derived > Class Template Reference

Base class for all dense matrices, vectors, and expressions. More...

#include <MatrixBase.h>

Inheritance diagram for Eigen::MatrixBase< Derived >:
Inheritance graph
[legend]

Classes

struct  ConstDiagonalIndexReturnType
 
struct  ConstSelfAdjointViewReturnType
 
struct  ConstTriangularViewReturnType
 
struct  cross_product_return_type
 
struct  DiagonalIndexReturnType
 
struct  SelfAdjointViewReturnType
 
struct  TriangularViewReturnType
 

Public Types

enum  { HomogeneousReturnTypeDirection }
 
enum  { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }
 
typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType >::type AdjointReturnType
 
typedef DenseBase< Derived > Base
 
typedef Block< const CwiseNullaryOp< internal::scalar_identity_op< Scalar >, SquareMatrixType >, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTimeBasisReturnType
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef Base::ColXpr ColXpr
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObjectConstantReturnType
 
typedef internal::add_const< Diagonal< const Derived, DynamicIndex > >::type ConstDiagonalDynamicIndexReturnType
 
typedef internal::add_const< Diagonal< const Derived > >::type ConstDiagonalReturnType
 
typedef Block< const Derived, internal::traits< Derived >::ColsAtCompileTime==1 ? SizeMinusOne :1, internal::traits< Derived >::ColsAtCompileTime==1 ? 1 :SizeMinusOneConstStartMinusOne
 
typedef Base::ConstTransposeReturnType ConstTransposeReturnType
 
typedef Diagonal< Derived, DynamicIndexDiagonalDynamicIndexReturnType
 
typedef Diagonal< Derived > DiagonalReturnType
 
typedef Matrix< std::complex< RealScalar >, internal::traits< Derived >::ColsAtCompileTime, 1, ColMajorEigenvaluesReturnType
 
typedef Homogeneous< Derived, HomogeneousReturnTypeDirectionHomogeneousReturnType
 
typedef CwiseNullaryOp< internal::scalar_identity_op< Scalar >, PlainObjectIdentityReturnType
 
typedef internal::packet_traits< Scalar >::type PacketScalar
 
typedef Base::PlainObject PlainObject
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef Base::RowXpr RowXpr
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef Matrix< Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime)> SquareMatrixType
 
typedef internal::stem_function< Scalar >::type StemFunction
 
typedef MatrixBase StorageBaseType
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
- Public Types inherited from Eigen::DenseBase< Derived >
enum  {
  RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, SizeAtCompileTime, MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, MaxSizeAtCompileTime, IsVectorAtCompileTime, NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2,
  Flags = internal::traits<Derived>::Flags, IsRowMajor = int(Flags) & RowMajorBit, InnerSizeAtCompileTime, InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
  OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
}
 
enum  { IsPlainObjectBase = 0 }
 
typedef DenseCoeffsBase< Derived, internal::accessors_level< Derived >::valueBase
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef VectorwiseOp< Derived, VerticalColwiseReturnType
 
typedef internal::conditional< IsVectorAtCompileTime, const_iterator_type, void >::type const_iterator
 
typedef internal::conditional<(Flags &DirectAccessBit)==DirectAccessBit, internal::pointer_based_stl_iterator< const Derived >, internal::generic_randaccess_stl_iterator< const Derived > >::type const_iterator_type
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObjectConstantReturnType
 
typedef internal::add_const< Transpose< const Derived > >::type ConstTransposeReturnType
 
typedef Matrix< typename NumTraits< typename internal::traits< Derived >::Scalar >::Real, internal::traits< Derived >::ColsAtCompileTime, 1 > EigenvaluesReturnType
 
typedef internal::add_const_on_value_type< typename internal::eval< Derived >::type >::type EvalReturnType
 
typedef Eigen::InnerIterator< Derived > InnerIterator
 
typedef internal::conditional< IsVectorAtCompileTime, iterator_type, void >::type iterator
 
typedef internal::conditional<(Flags &DirectAccessBit)==DirectAccessBit, internal::pointer_based_stl_iterator< Derived >, internal::generic_randaccess_stl_iterator< Derived > >::type iterator_type
 
typedef internal::find_best_packet< Scalar, SizeAtCompileTime >::type PacketScalar
 
typedef Array< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainArray
 
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainMatrix
 
typedef internal::conditional< internal::is_same< typename internal::traits< Derived >::XprKind, MatrixXpr >::value, PlainMatrix, PlainArray >::type PlainObject
 The plain matrix or array type corresponding to this expression. More...
 
typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObjectRandomAccessLinSpacedReturnType
 
typedef CwiseNullaryOp< internal::scalar_random_op< Scalar >, PlainObjectRandomReturnType
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef Reverse< Derived, BothDirectionsReverseReturnType
 
typedef VectorwiseOp< Derived, HorizontalRowwiseReturnType
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 The type used to store indices. More...
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef Transpose< Derived > TransposeReturnType
 
typedef Scalar value_type
 

Public Member Functions

const EIGEN_DEVICE_FUNC AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC void adjointInPlace ()
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 
template<typename OtherDerived >
void applyOnTheLeft (const EigenBase< OtherDerived > &other)
 
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 
template<typename OtherDerived >
void applyOnTheRight (const EigenBase< OtherDerived > &other)
 
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper< Derived > array ()
 
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE ArrayWrapper< const Derived > array () const
 
const EIGEN_DEVICE_FUNC DiagonalWrapper< const Derived > asDiagonal () const
 
const PermutationWrapper< const Derived > asPermutation () const
 
BDCSVD< PlainObjectbdcSvd (unsigned int computationOptions=0) const
 
RealScalar blueNorm () const
 
const ColPivHouseholderQR< PlainObjectcolPivHouseholderQr () const
 
const CompleteOrthogonalDecomposition< PlainObjectcompleteOrthogonalDecomposition () const
 
template<typename ResultType >
void computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 
template<typename ResultType >
void computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC cross_product_return_type< OtherDerived >::type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC PlainObject cross3 (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
const EIGEN_STRONG_INLINE SparseMatrixBase< OtherDerived >::template CwiseProductDenseReturnType< Derived >::Type cwiseProduct (const SparseMatrixBase< OtherDerived > &other) const
 
EIGEN_DEVICE_FUNC Scalar determinant () const
 
EIGEN_DEVICE_FUNC DiagonalReturnType diagonal ()
 
template<int Index>
EIGEN_DEVICE_FUNC DiagonalIndexReturnType< Index >::Type diagonal ()
 
EIGEN_DEVICE_FUNC ConstDiagonalReturnType diagonal () const
 
template<int Index>
EIGEN_DEVICE_FUNC ConstDiagonalIndexReturnType< Index >::Type diagonal () const
 
EIGEN_DEVICE_FUNC DiagonalDynamicIndexReturnType diagonal (Index index)
 
EIGEN_DEVICE_FUNC ConstDiagonalDynamicIndexReturnType diagonal (Index index) const
 
EIGEN_DEVICE_FUNC Index diagonalSize () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE (ConstStartMinusOne, Scalar, quotient) HNormalizedReturnType
 
EigenvaluesReturnType eigenvalues () const
 Computes the eigenvalues of a matrix. More...
 
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > eulerAngles (Index a0, Index a1, Index a2) const
 
Derived & forceAlignedAccess ()
 
const Derived & forceAlignedAccess () const
 
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf ()
 
template<bool Enable>
Derived & forceAlignedAccessIf ()
 
template<bool Enable>
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type forceAlignedAccessIf () const
 
template<bool Enable>
const Derived & forceAlignedAccessIf () const
 
const FullPivHouseholderQR< PlainObjectfullPivHouseholderQr () const
 
const FullPivLU< PlainObjectfullPivLu () const
 
const EIGEN_DEVICE_FUNC HNormalizedReturnType hnormalized () const
 homogeneous normalization More...
 
EIGEN_DEVICE_FUNC HomogeneousReturnType homogeneous () const
 
const HouseholderQR< PlainObjecthouseholderQr () const
 
RealScalar hypotNorm () const
 
const EIGEN_DEVICE_FUNC Inverse< Derived > inverse () const
 
bool isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
bool isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
JacobiSVD< PlainObjectjacobiSvd (unsigned int computationOptions=0) const
 
template<typename OtherDerived >
const EIGEN_DEVICE_FUNC Product< Derived, OtherDerived, LazyProductlazyProduct (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Product< Derived, OtherDerived, LazyProductlazyProduct (const MatrixBase< OtherDerived > &other) const
 
const LDLT< PlainObjectldlt () const
 
const LLT< PlainObjectllt () const
 
template<int p>
EIGEN_DEVICE_FUNC NumTraits< typename internal::traits< Derived >::Scalar >::Real lpNorm () const
 
template<int p>
EIGEN_DEVICE_FUNC RealScalar lpNorm () const
 
const PartialPivLU< PlainObjectlu () const
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const
 
EIGEN_DEVICE_FUNC void makeHouseholderInPlace (Scalar &tau, RealScalar &beta)
 
EIGEN_DEVICE_FUNC MatrixBase< Derived > & matrix ()
 
const EIGEN_DEVICE_FUNC MatrixBase< Derived > & matrix () const
 
const MatrixFunctionReturnValue< Derived > matrixFunction (StemFunction f) const
 Helper function for the unsupported MatrixFunctions module. More...
 
NoAlias< Derived, Eigen::MatrixBase > EIGEN_DEVICE_FUNC noalias ()
 
EIGEN_DEVICE_FUNC RealScalar norm () const
 
EIGEN_DEVICE_FUNC void normalize ()
 
const EIGEN_DEVICE_FUNC PlainObject normalized () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool operator!= (const MatrixBase< OtherDerived > &other) const
 
template<typename DiagonalDerived >
const EIGEN_DEVICE_FUNC Product< Derived, DiagonalDerived, LazyProductoperator* (const DiagonalBase< DiagonalDerived > &diagonal) const
 
template<typename OtherDerived >
const EIGEN_DEVICE_FUNC Product< Derived, OtherDerived > operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Product< Derived, OtherDerived > operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
Derived & operator*= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator+= (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator-= (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const EigenBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const MatrixBase &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool operator== (const MatrixBase< OtherDerived > &other) const
 
RealScalar operatorNorm () const
 Computes the L2 operator norm. More...
 
const PartialPivLU< PlainObjectpartialPivLu () const
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
EIGEN_DEVICE_FUNC Derived & setIdentity ()
 
EIGEN_DEVICE_FUNC Derived & setIdentity (Index rows, Index cols)
 Resizes to the given size, and writes the identity expression (not necessarily square) into *this. More...
 
EIGEN_DEVICE_FUNC Derived & setUnit (Index i)
 Set the coefficients of *this to the i-th unit (basis) vector. More...
 
EIGEN_DEVICE_FUNC Derived & setUnit (Index newSize, Index i)
 Resizes to the given newSize, and writes the i-th unit (basis) vector into *this. More...
 
const SparseView< Derived > sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC RealScalar squaredNorm () const
 
RealScalar stableNorm () const
 
EIGEN_DEVICE_FUNC void stableNormalize ()
 
const EIGEN_DEVICE_FUNC PlainObject stableNormalized () const
 
EIGEN_DEVICE_FUNC Scalar trace () const
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType< Mode >::Type triangularView () const
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type triangularView () const
 
EIGEN_DEVICE_FUNC PlainObject unitOrthogonal (void) const
 
- Public Member Functions inherited from Eigen::DenseBase< Derived >
EIGEN_DEVICE_FUNC bool all () const
 
bool allFinite () const
 
EIGEN_DEVICE_FUNC bool any () const
 
iterator begin ()
 
const_iterator begin () const
 
const_iterator cbegin () const
 
const_iterator cend () const
 
EIGEN_DEVICE_FUNC ColwiseReturnType colwise ()
 
EIGEN_DEVICE_FUNC ConstColwiseReturnType colwise () const
 
EIGEN_DEVICE_FUNC Index count () const
 
iterator end ()
 
const_iterator end () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvalReturnType eval () const
 
template<typename Dest >
EIGEN_DEVICE_FUNC void evalTo (Dest &) const
 
EIGEN_DEVICE_FUNC void fill (const Scalar &value)
 
template<unsigned int Added, unsigned int Removed>
const EIGEN_DEPRECATED Derived & flagged () const
 
EIGEN_DEVICE_FUNC ForceAlignedAccess< Derived > forceAlignedAccess ()
 
const EIGEN_DEVICE_FUNC ForceAlignedAccess< Derived > forceAlignedAccess () const
 
template<bool Enable>
EIGEN_DEVICE_FUNC internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf ()
 
template<bool Enable>
const EIGEN_DEVICE_FUNC internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type forceAlignedAccessIf () const
 
const WithFormat< Derived > format (const IOFormat &fmt) const
 
bool hasNaN () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerSize () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const RealScalar &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename Derived >
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const
 
EIGEN_DEVICE_FUNC bool isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
template<int p>
RealScalar lpNorm () const
 
template<int NaNPropagation>
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff () const
 
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff () const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
EIGEN_DEVICE_FUNC Scalar mean () const
 
template<int NaNPropagation>
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff () const
 
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff () const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
const EIGEN_DEVICE_FUNC NestByValue< Derived > nestByValue () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index nonZeros () const
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator*= (const Scalar &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator+= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator-= (const EigenBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator/= (const Scalar &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC CommaInitializer< Derived > operator<< (const DenseBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC CommaInitializer< Derived > operator<< (const Scalar &s)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const EigenBase< OtherDerived > &other)
 Copies the generic expression other into *this. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const ReturnByValue< OtherDerived > &func)
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerSize () const
 
EIGEN_DEVICE_FUNC Scalar prod () const
 
template<typename BinaryOp >
EIGEN_DEVICE_FUNC Scalar redux (const BinaryOp &func) const
 
template<typename Func >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar redux (const Func &func) const
 
template<int RowFactor, int ColFactor>
const EIGEN_DEVICE_FUNC Replicate< Derived, RowFactor, ColFactor > replicate () const
 
const EIGEN_DEVICE_FUNC Replicate< Derived, Dynamic, Dynamicreplicate (Index rowFactor, Index colFactor) const
 
EIGEN_DEVICE_FUNC void resize (Index newSize)
 
EIGEN_DEVICE_FUNC void resize (Index rows, Index cols)
 
EIGEN_DEVICE_FUNC ReverseReturnType reverse ()
 
EIGEN_DEVICE_FUNC ConstReverseReturnType reverse () const
 
EIGEN_DEVICE_FUNC void reverseInPlace ()
 
EIGEN_DEVICE_FUNC RowwiseReturnType rowwise ()
 
EIGEN_DEVICE_FUNC ConstRowwiseReturnType rowwise () const
 
template<typename ThenDerived , typename ElseDerived >
const EIGEN_DEVICE_FUNC Select< Derived, ThenDerived, ElseDerived > select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
 
template<typename ThenDerived >
const EIGEN_DEVICE_FUNC Select< Derived, ThenDerived, typename ThenDerived::ConstantReturnType > select (const DenseBase< ThenDerived > &thenMatrix, const typename ThenDerived::Scalar &elseScalar) const
 
template<typename ElseDerived >
const EIGEN_DEVICE_FUNC Select< Derived, typename ElseDerived::ConstantReturnType, ElseDerived > select (const typename ElseDerived::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
 
EIGEN_DEVICE_FUNC Derived & setConstant (const Scalar &value)
 
EIGEN_DEVICE_FUNC Derived & setLinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEVICE_FUNC Derived & setLinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEVICE_FUNC Derived & setOnes ()
 
EIGEN_DEVICE_FUNC Derived & setRandom ()
 
EIGEN_DEVICE_FUNC Derived & setZero ()
 
EIGEN_DEVICE_FUNC Scalar sum () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap (PlainObjectBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC Scalar trace () const
 
EIGEN_DEVICE_FUNC TransposeReturnType transpose ()
 
EIGEN_DEVICE_FUNC ConstTransposeReturnType transpose () const
 
EIGEN_DEVICE_FUNC void transposeInPlace ()
 
EIGEN_DEVICE_FUNC CoeffReturnType value () const
 
template<typename Visitor >
EIGEN_DEVICE_FUNC void visit (Visitor &func) const
 

Static Public Member Functions

static const EIGEN_DEVICE_FUNC IdentityReturnType Identity ()
 
static const EIGEN_DEVICE_FUNC IdentityReturnType Identity (Index rows, Index cols)
 
static const EIGEN_DEVICE_FUNC BasisReturnType Unit (Index i)
 
static const EIGEN_DEVICE_FUNC BasisReturnType Unit (Index size, Index i)
 
static const EIGEN_DEVICE_FUNC BasisReturnType UnitW ()
 
static const EIGEN_DEVICE_FUNC BasisReturnType UnitX ()
 
static const EIGEN_DEVICE_FUNC BasisReturnType UnitY ()
 
static const EIGEN_DEVICE_FUNC BasisReturnType UnitZ ()
 
- Static Public Member Functions inherited from Eigen::DenseBase< Derived >
static const EIGEN_DEVICE_FUNC ConstantReturnType Constant (const Scalar &value)
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Constant (Index rows, Index cols, const Scalar &value)
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Constant (Index size, const Scalar &value)
 
static const EIGEN_DEVICE_FUNC RandomAccessLinSpacedReturnType LinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
static const EIGEN_DEVICE_FUNC RandomAccessLinSpacedReturnType LinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEPRECATED static const EIGEN_DEVICE_FUNC RandomAccessLinSpacedReturnType LinSpaced (Sequential_t, const Scalar &low, const Scalar &high)
 
EIGEN_DEPRECATED static const EIGEN_DEVICE_FUNC RandomAccessLinSpacedReturnType LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high)
 
template<typename CustomNullaryOp >
static const EIGEN_DEVICE_FUNC CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static const EIGEN_DEVICE_FUNC CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static const EIGEN_DEVICE_FUNC CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Ones ()
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Ones (Index rows, Index cols)
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Ones (Index size)
 
static const RandomReturnType Random ()
 
static const RandomReturnType Random (Index rows, Index cols)
 
static const RandomReturnType Random (Index size)
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Zero ()
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Zero (Index rows, Index cols)
 
static const EIGEN_DEVICE_FUNC ConstantReturnType Zero (Index size)
 

Protected Member Functions

template<typename OtherDerived >
Derived & operator+= (const ArrayBase< OtherDerived > &)
 
template<typename OtherDerived >
Derived & operator-= (const ArrayBase< OtherDerived > &)
 
- Protected Member Functions inherited from Eigen::DenseBase< Derived >
EIGEN_DEVICE_FUNC DenseBase ()
 

Private Member Functions

template<typename OtherDerived >
EIGEN_DEVICE_FUNC MatrixBase (const MatrixBase< OtherDerived > &)
 
EIGEN_DEVICE_FUNC MatrixBase (int)
 
EIGEN_DEVICE_FUNC MatrixBase (int, int)
 

Additional Inherited Members

- Public Attributes inherited from Eigen::DenseBase< Derived >
const typedef VectorwiseOp< const Derived, VerticalConstColwiseReturnType
 
const typedef Reverse< const Derived, BothDirectionsConstReverseReturnType
 
const typedef VectorwiseOp< const Derived, HorizontalConstRowwiseReturnType
 
EIGEN_DEPRECATED typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObjectSequentialLinSpacedReturnType
 

Detailed Description

template<typename Derived>
class Eigen::MatrixBase< Derived >

Base class for all dense matrices, vectors, and expressions.

This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.

Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.

Template Parameters
Derivedis the derived type, e.g. a matrix type, or an expression, etc.

When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.

template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}

This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN.

See also
\blank The class hierarchy

Definition at line 48 of file MatrixBase.h.

Member Typedef Documentation

◆ AdjointReturnType

Definition at line 113 of file MatrixBase.h.

◆ Base

template<typename Derived >
typedef DenseBase<Derived> Eigen::MatrixBase< Derived >::Base

Definition at line 60 of file MatrixBase.h.

◆ BasisReturnType

Definition at line 121 of file MatrixBase.h.

◆ CoeffReturnType

template<typename Derived >
typedef Base::CoeffReturnType Eigen::MatrixBase< Derived >::CoeffReturnType

Definition at line 85 of file MatrixBase.h.

◆ ColXpr

template<typename Derived >
typedef Base::ColXpr Eigen::MatrixBase< Derived >::ColXpr

Definition at line 88 of file MatrixBase.h.

◆ ConstantReturnType

Definition at line 108 of file MatrixBase.h.

◆ ConstDiagonalDynamicIndexReturnType

template<typename Derived >
typedef internal::add_const<Diagonal<const Derived,DynamicIndex> >::type Eigen::MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType

Definition at line 225 of file MatrixBase.h.

◆ ConstDiagonalReturnType

template<typename Derived >
typedef internal::add_const<Diagonal<const Derived> >::type Eigen::MatrixBase< Derived >::ConstDiagonalReturnType

Definition at line 209 of file MatrixBase.h.

◆ ConstStartMinusOne

template<typename Derived >
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne

Definition at line 414 of file MatrixBase.h.

◆ ConstTransposeReturnType

template<typename Derived >
typedef Base::ConstTransposeReturnType Eigen::MatrixBase< Derived >::ConstTransposeReturnType

Definition at line 86 of file MatrixBase.h.

◆ DiagonalDynamicIndexReturnType

template<typename Derived >
typedef Diagonal<Derived,DynamicIndex> Eigen::MatrixBase< Derived >::DiagonalDynamicIndexReturnType

Definition at line 224 of file MatrixBase.h.

◆ DiagonalReturnType

template<typename Derived >
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType

Definition at line 205 of file MatrixBase.h.

◆ EigenvaluesReturnType

template<typename Derived >
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> Eigen::MatrixBase< Derived >::EigenvaluesReturnType

Definition at line 115 of file MatrixBase.h.

◆ HomogeneousReturnType

template<typename Derived >
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> Eigen::MatrixBase< Derived >::HomogeneousReturnType

Definition at line 405 of file MatrixBase.h.

◆ IdentityReturnType

Definition at line 117 of file MatrixBase.h.

◆ PacketScalar

template<typename Derived >
typedef internal::packet_traits<Scalar>::type Eigen::MatrixBase< Derived >::PacketScalar

Definition at line 57 of file MatrixBase.h.

◆ PlainObject

template<typename Derived >
typedef Base::PlainObject Eigen::MatrixBase< Derived >::PlainObject

Definition at line 104 of file MatrixBase.h.

◆ RealScalar

template<typename Derived >
typedef NumTraits<Scalar>::Real Eigen::MatrixBase< Derived >::RealScalar

Definition at line 58 of file MatrixBase.h.

◆ RowXpr

template<typename Derived >
typedef Base::RowXpr Eigen::MatrixBase< Derived >::RowXpr

Definition at line 87 of file MatrixBase.h.

◆ Scalar

template<typename Derived >
typedef internal::traits<Derived>::Scalar Eigen::MatrixBase< Derived >::Scalar

Definition at line 56 of file MatrixBase.h.

◆ SquareMatrixType

type of the equivalent square matrix

Definition at line 96 of file MatrixBase.h.

◆ StemFunction

template<typename Derived >
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction

Definition at line 458 of file MatrixBase.h.

◆ StorageBaseType

template<typename Derived >
typedef MatrixBase Eigen::MatrixBase< Derived >::StorageBaseType

Definition at line 53 of file MatrixBase.h.

◆ StorageIndex

template<typename Derived >
typedef internal::traits<Derived>::StorageIndex Eigen::MatrixBase< Derived >::StorageIndex

Definition at line 55 of file MatrixBase.h.

◆ StorageKind

template<typename Derived >
typedef internal::traits<Derived>::StorageKind Eigen::MatrixBase< Derived >::StorageKind

Definition at line 54 of file MatrixBase.h.

Member Enumeration Documentation

◆ anonymous enum

template<typename Derived >
anonymous enum
Enumerator
HomogeneousReturnTypeDirection 

Definition at line 403 of file MatrixBase.h.

◆ anonymous enum

template<typename Derived >
anonymous enum
Enumerator
SizeMinusOne 

Definition at line 409 of file MatrixBase.h.

Constructor & Destructor Documentation

◆ MatrixBase() [1/3]

template<typename Derived >
EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::MatrixBase ( int  )
explicitprivate

◆ MatrixBase() [2/3]

template<typename Derived >
EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::MatrixBase ( int  ,
int   
)
private

◆ MatrixBase() [3/3]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::MatrixBase ( const MatrixBase< OtherDerived > &  )
explicitprivate

Member Function Documentation

◆ adjoint()

template<typename Derived >
const EIGEN_DEVICE_FUNC MatrixBase< Derived >::AdjointReturnType Eigen::MatrixBase< Derived >::adjoint
inline
Returns
an expression of the adjoint (i.e. conjugate transpose) of *this.

Example:

Matrix2cf m = Matrix2cf::Random();
cout << "Here is the 2x2 complex matrix m:" << endl << m << endl;
cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;

Output:

Warning
If you want to replace a matrix by its own adjoint, do NOT do this:
m = m.adjoint(); // bug!!! caused by aliasing effect
Instead, use the adjointInPlace() method:
m.adjointInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
m = m.adjoint().eval();
See also
adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op

Definition at line 221 of file Transpose.h.

◆ adjointInPlace()

template<typename Derived >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::adjointInPlace
inline

This is the "in place" version of adjoint(): it replaces *this by its own transpose. Thus, doing

m.adjointInPlace();

has the same effect on m as doing

m = m.adjoint().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().

Note
if the matrix is not square, then *this must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.
See also
transpose(), adjoint(), transposeInPlace()

Definition at line 375 of file Transpose.h.

◆ applyHouseholderOnTheLeft()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by $ H = I - tau v v^*$ with $ v^T = [1 essential^T] $ from the left to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheRight()

Definition at line 116 of file Householder.h.

◆ applyHouseholderOnTheRight()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by $ H = I - tau v v^*$ with $ v^T = [1 essential^T] $ from the right to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->rows() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft()

Definition at line 154 of file Householder.h.

◆ applyOnTheLeft() [1/2]

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by other * *this.

Example:

Matrix3f A = Matrix3f::Random(3,3), B;
B << 0,1,0,
0,0,1,
1,0,0;
cout << "At start, A = " << endl << A << endl;
A.applyOnTheLeft(B);
cout << "After applyOnTheLeft, A = " << endl << A << endl;

Output:

 

Definition at line 540 of file MatrixBase.h.

◆ applyOnTheLeft() [2/2]

template<typename Derived >
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyOnTheLeft ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
)
inline

\jacobi_module Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with $ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) $.

See also
class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()

Definition at line 295 of file Jacobi.h.

◆ applyOnTheRight()

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheRight ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other. It is equivalent to MatrixBase::operator*=().

Example:

Matrix3f A = Matrix3f::Random(3,3), B;
B << 0,1,0,
0,0,1,
1,0,0;
cout << "At start, A = " << endl << A << endl;
A *= B;
cout << "After A *= B, A = " << endl << A << endl;
A.applyOnTheRight(B); // equivalent to A *= B
cout << "After applyOnTheRight, A = " << endl << A << endl;

Output:

 

Definition at line 528 of file MatrixBase.h.

◆ array() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> Eigen::MatrixBase< Derived >::array ( )
inline
Returns
an Array expression of this matrix
See also
ArrayBase::matrix()

Definition at line 319 of file MatrixBase.h.

◆ array() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE ArrayWrapper<const Derived> Eigen::MatrixBase< Derived >::array ( ) const
inline
Returns
a const Array expression of this matrix
See also
ArrayBase::matrix()

Definition at line 322 of file MatrixBase.h.

◆ asDiagonal()

template<typename Derived >
const EIGEN_DEVICE_FUNC DiagonalWrapper< const Derived > Eigen::MatrixBase< Derived >::asDiagonal
inline
Returns
a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients

\only_for_vectors

Example:

cout << Matrix3i(Vector3i(2,5,6).asDiagonal()) << endl;

Output:

See also
class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()

Definition at line 325 of file DiagonalMatrix.h.

◆ asPermutation()

template<typename Derived >
const PermutationWrapper< const Derived > Eigen::MatrixBase< Derived >::asPermutation

Definition at line 592 of file PermutationMatrix.h.

◆ bdcSvd()

template<typename Derived >
BDCSVD< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::bdcSvd ( unsigned int  computationOptions = 0) const
inline

\svd_module

Returns
the singular value decomposition of *this computed by Divide & Conquer algorithm
See also
class BDCSVD

Definition at line 1359 of file BDCSVD.h.

◆ blueNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::blueNorm
inline
Returns
the l2 norm of *this using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.

For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.

See also
norm(), stableNorm(), hypotNorm()

Definition at line 229 of file StableNorm.h.

◆ colPivHouseholderQr()

template<typename Derived >
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::colPivHouseholderQr
inline
Returns
the column-pivoting Householder QR decomposition of *this.
See also
class ColPivHouseholderQR

Definition at line 667 of file ColPivHouseholderQR.h.

◆ completeOrthogonalDecomposition()

template<typename Derived >
const CompleteOrthogonalDecomposition< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::completeOrthogonalDecomposition
inline
Returns
the complete orthogonal decomposition of *this.
See also
class CompleteOrthogonalDecomposition

Definition at line 629 of file CompleteOrthogonalDecomposition.h.

◆ computeInverseAndDetWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseAndDetWithCheck ( ResultType &  inverse,
typename ResultType::Scalar determinant,
bool &  invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

\lu_module

Computation of matrix inverse and determinant, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Notice that it will trigger a copy of input matrix when trying to do the inverse in place.

Parameters
inverseReference to the matrix in which to store the inverse.
determinantReference to the variable in which to store the determinant.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
Matrix3d inverse;
bool invertible;
double determinant;
m.computeInverseAndDetWithCheck(inverse,determinant,invertible);
cout << "Its determinant is " << determinant << endl;
if(invertible) {
cout << "It is invertible, and its inverse is:" << endl << inverse << endl;
}
else {
cout << "It is not invertible." << endl;
}

Output:

See also
inverse(), computeInverseWithCheck()

Definition at line 377 of file InverseImpl.h.

◆ computeInverseWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseWithCheck ( ResultType &  inverse,
bool &  invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

\lu_module

Computation of matrix inverse, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Notice that it will trigger a copy of input matrix when trying to do the inverse in place.

Parameters
inverseReference to the matrix in which to store the inverse.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
Matrix3d inverse;
bool invertible;
m.computeInverseWithCheck(inverse,invertible);
if(invertible) {
cout << "It is invertible, and its inverse is:" << endl << inverse << endl;
}
else {
cout << "It is not invertible." << endl;
}

Output:

See also
inverse(), computeInverseAndDetWithCheck()

Definition at line 418 of file InverseImpl.h.

◆ cross()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC cross_product_return_type<OtherDerived>::type Eigen::MatrixBase< Derived >::cross ( const MatrixBase< OtherDerived > &  other) const
inline

◆ cwiseProduct()

template<typename Derived >
template<typename OtherDerived >
const EIGEN_STRONG_INLINE SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type Eigen::MatrixBase< Derived >::cwiseProduct ( const SparseMatrixBase< OtherDerived > &  other) const
inline

Definition at line 451 of file MatrixBase.h.

◆ determinant()

template<typename Derived >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::determinant
inline

\lu_module

Returns
the determinant of this matrix

Definition at line 108 of file Determinant.h.

◆ diagonal() [1/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index_ >::Type Eigen::MatrixBase< Derived >::diagonal
inline
Returns
an expression of the main diagonal of the matrix *this

*this is not required to be square.

Example:

Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here are the coefficients on the main diagonal of m:" << endl
<< m.diagonal() << endl;

Output:

See also
class Diagonal

This is the const version of diagonal().

Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl
<< m.diagonal<1>().transpose() << endl
<< m.diagonal<-2>().transpose() << endl;

Output:

See also
MatrixBase::diagonal(), class Diagonal

This is the const version of diagonal<int>().

Definition at line 187 of file Diagonal.h.

◆ diagonal() [2/6]

template<typename Derived >
template<int Index>
EIGEN_DEVICE_FUNC DiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal ( )

◆ diagonal() [3/6]

template<typename Derived >
EIGEN_DEVICE_FUNC ConstDiagonalReturnType Eigen::MatrixBase< Derived >::diagonal ( ) const

◆ diagonal() [4/6]

template<typename Derived >
template<int Index>
EIGEN_DEVICE_FUNC ConstDiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal ( ) const

◆ diagonal() [5/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::DiagonalDynamicIndexReturnType Eigen::MatrixBase< Derived >::diagonal ( Index  index)
inline
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl
<< m.diagonal(1).transpose() << endl
<< m.diagonal(-2).transpose() << endl;

Output:

See also
MatrixBase::diagonal(), class Diagonal

Definition at line 213 of file Diagonal.h.

◆ diagonal() [6/6]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase< Derived >::ConstDiagonalDynamicIndexReturnType Eigen::MatrixBase< Derived >::diagonal ( Index  index) const
inline

This is the const version of diagonal(Index).

Definition at line 221 of file Diagonal.h.

◆ diagonalSize()

template<typename Derived >
EIGEN_DEVICE_FUNC Index Eigen::MatrixBase< Derived >::diagonalSize ( ) const
inline
Returns
the size of the main diagonal, which is min(rows(),cols()).
See also
rows(), cols(), SizeAtCompileTime.

Definition at line 102 of file MatrixBase.h.

◆ dot() [1/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const

Definition at line 72 of file Dot.h.

◆ dot() [2/2]

template<typename Derived >
template<typename OtherDerived >
Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const
Returns
the dot product of *this with other.

\only_for_vectors

Note
If the scalar type is complex numbers, then this function returns the hermitian (sesquilinear) dot product, conjugate-linear in the first variable and linear in the second variable.
See also
squaredNorm(), norm()

◆ EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE()

template<typename Derived >
typedef Eigen::MatrixBase< Derived >::EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE ( ConstStartMinusOne  ,
Scalar  ,
quotient   
)

◆ eigenvalues()

template<typename Derived >
MatrixBase< Derived >::EigenvaluesReturnType Eigen::MatrixBase< Derived >::eigenvalues
inline

Computes the eigenvalues of a matrix.

Returns
Column vector containing the eigenvalues.

\eigenvalues_module This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).

The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.

The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

MatrixXd ones = MatrixXd::Ones(3,3);
VectorXcd eivals = ones.eigenvalues();
cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;

Output:

See also
EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), SelfAdjointView::eigenvalues()

Definition at line 67 of file MatrixBaseEigenvalues.h.

◆ forceAlignedAccess() [1/2]

template<typename Derived >
Derived& Eigen::MatrixBase< Derived >::forceAlignedAccess ( )
inline

Definition at line 306 of file MatrixBase.h.

◆ forceAlignedAccess() [2/2]

template<typename Derived >
ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(),class ForceAlignedAccess
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(), class ForceAlignedAccess

Definition at line 305 of file MatrixBase.h.

◆ forceAlignedAccessIf() [1/4]

template<typename Derived >
template<bool Enable>
internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess

Definition at line 143 of file ForceAlignedAccess.h.

◆ forceAlignedAccessIf() [2/4]

template<typename Derived >
template<bool Enable>
Derived& Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline

Definition at line 308 of file MatrixBase.h.

◆ forceAlignedAccessIf() [3/4]

template<typename Derived >
template<bool Enable>
internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess

Definition at line 132 of file ForceAlignedAccess.h.

◆ forceAlignedAccessIf() [4/4]

template<typename Derived >
template<bool Enable>
const Derived& Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline

Definition at line 307 of file MatrixBase.h.

◆ fullPivHouseholderQr()

template<typename Derived >
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivHouseholderQr
inline
Returns
the full-pivoting Householder QR decomposition of *this.
See also
class FullPivHouseholderQR

Definition at line 706 of file FullPivHouseholderQR.h.

◆ fullPivLu()

template<typename Derived >
const FullPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivLu
inline

\lu_module

Returns
the full-pivoting LU decomposition of *this.
See also
class FullPivLU

Definition at line 870 of file FullPivLU.h.

◆ householderQr()

template<typename Derived >
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::householderQr
inline
Returns
the Householder QR decomposition of *this.
See also
class HouseholderQR

Definition at line 427 of file HouseholderQR.h.

◆ hypotNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::hypotNorm
inline
Returns
the l2 norm of *this avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.
See also
norm(), stableNorm()

Definition at line 241 of file StableNorm.h.

◆ Identity() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity
static
Returns
an expression of the identity matrix (not necessarily square).

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.

Example:

cout << Matrix<double, 3, 4>::Identity() << endl;

Output:

See also
Identity(Index,Index), setIdentity(), isIdentity()

Definition at line 799 of file CwiseNullaryOp.h.

◆ Identity() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( Index  rows,
Index  cols 
)
static
Returns
an expression of the identity matrix (not necessarily square).

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.

Example:

cout << MatrixXd::Identity(4, 3) << endl;

Output:

See also
Identity(), setIdentity(), isIdentity()

Definition at line 782 of file CwiseNullaryOp.h.

◆ inverse()

template<typename Derived >
const EIGEN_DEVICE_FUNC Inverse< Derived > Eigen::MatrixBase< Derived >::inverse
inline

\lu_module

Returns
the matrix inverse of this matrix.

For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.

Note
This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, do the following: Example:
Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Its inverse is:" << endl << m.inverse() << endl;
Output:
See also
computeInverseAndDetWithCheck()

Definition at line 348 of file InverseImpl.h.

◆ isDiagonal()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isDiagonal ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a diagonal matrix, within the precision given by prec.

Example:

Matrix3d m = 10000 * Matrix3d::Identity();
m(0,2) = 1;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isDiagonal() returns: " << m.isDiagonal() << endl;
cout << "m.isDiagonal(1e-3) returns: " << m.isDiagonal(1e-3) << endl;

Output:

See also
asDiagonal()

Definition at line 339 of file DiagonalMatrix.h.

◆ isIdentity()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isIdentity ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to the identity matrix (not necessarily square), within the precision given by prec.

Example:

Matrix3d m = Matrix3d::Identity();
m(0,2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isIdentity() returns: " << m.isIdentity() << endl;
cout << "m.isIdentity(1e-3) returns: " << m.isIdentity(1e-3) << endl;

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()

Definition at line 816 of file CwiseNullaryOp.h.

◆ isLowerTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isLowerTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a lower triangular matrix, within the precision given by prec.
See also
isUpperTriangular()

Definition at line 690 of file TriangularMatrix.h.

◆ isOrthogonal()

template<typename Derived >
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::isOrthogonal ( const MatrixBase< OtherDerived > &  other,
const RealScalar prec = NumTraits<Scalar>::dummy_precision() 
) const
Returns
true if *this is approximately orthogonal to other, within the precision given by prec.

Example:

Vector3d v(1,0,0);
Vector3d w(1e-4,0,1);
cout << "Here's the vector v:" << endl << v << endl;
cout << "Here's the vector w:" << endl << w << endl;
cout << "v.isOrthogonal(w) returns: " << v.isOrthogonal(w) << endl;
cout << "v.isOrthogonal(w,1e-3) returns: " << v.isOrthogonal(w,1e-3) << endl;

Output:

 

Definition at line 283 of file Dot.h.

◆ isUnitary()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUnitary ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately an unitary matrix, within the precision given by prec. In the case where the Scalar type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
Note
This can be used to check whether a family of vectors forms an orthonormal basis. Indeed, m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.

Example:

Matrix3d m = Matrix3d::Identity();
m(0,2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isUnitary() returns: " << m.isUnitary() << endl;
cout << "m.isUnitary(1e-3) returns: " << m.isUnitary(1e-3) << endl;

Output:

 

Definition at line 302 of file Dot.h.

◆ isUpperTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUpperTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to an upper triangular matrix, within the precision given by prec.
See also
isLowerTriangular()

Definition at line 665 of file TriangularMatrix.h.

◆ jacobiSvd()

template<typename Derived >
JacobiSVD< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::jacobiSvd ( unsigned int  computationOptions = 0) const
inline

\svd_module

Returns
the singular value decomposition of *this computed by two-sided Jacobi transformations.
See also
class JacobiSVD

Definition at line 805 of file JacobiSVD.h.

◆ lazyProduct() [1/2]

template<typename Derived >
template<typename OtherDerived >
const EIGEN_DEVICE_FUNC Product<Derived,OtherDerived,LazyProduct> Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const

◆ lazyProduct() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Product<Derived,OtherDerived,LazyProduct> Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const
Returns
an expression of the matrix product of *this and other without implicit evaluation.

The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.

Warning
This version of the matrix product can be much much slower. So use it only if you know what you are doing and that you measured a true speed improvement.
See also
operator*(const MatrixBase&)

Definition at line 442 of file GeneralProduct.h.

◆ ldlt()

template<typename Derived >
const LDLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::ldlt
inline

\cholesky_module

Returns
the Cholesky decomposition with full pivoting without square root of *this
See also
SelfAdjointView::ldlt()

Definition at line 681 of file LDLT.h.

◆ llt()

template<typename Derived >
const LLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::llt
inline

\cholesky_module

Returns
the LLT decomposition of *this
See also
SelfAdjointView::llt()

Definition at line 540 of file LLT.h.

◆ lpNorm() [1/2]

template<typename Derived >
template<int p>
EIGEN_DEVICE_FUNC NumTraits<typename internal::traits<Derived>::Scalar>::Real Eigen::MatrixBase< Derived >::lpNorm ( ) const
inline
Returns
the coefficient-wise $ \ell^p $ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this. If p is the special value Eigen::Infinity, this function returns the $ \ell^\infty $ norm, that is the maximum of the absolute values of the coefficients of *this.

In all cases, if *this is empty, then the value 0 is returned.

Note
For matrices, this function does not compute the operator-norm. That is, if *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and $\infty$-norm matrix operator norms using partial reductions .
See also
norm()

Definition at line 267 of file Dot.h.

◆ lpNorm() [2/2]

template<typename Derived >
template<int p>
EIGEN_DEVICE_FUNC RealScalar Eigen::MatrixBase< Derived >::lpNorm ( ) const

◆ lu()

template<typename Derived >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::lu
inline

\lu_module

Synonym of partialPivLu().

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU

Definition at line 617 of file PartialPivLU.h.

◆ makeHouseholder()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholder ( EssentialPart &  essential,
Scalar tau,
RealScalar beta 
) const

Computes the elementary reflector H such that: $ H *this = [ beta 0 ... 0]^T $ where the transformation H is: $ H = I - tau v v^*$ and the vector v is: $ v^T = [1 essential^T] $

On output:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

Definition at line 67 of file Householder.h.

◆ makeHouseholderInPlace()

template<typename Derived >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholderInPlace ( Scalar tau,
RealScalar beta 
)

Computes the elementary reflector H such that: $ H *this = [ beta 0 ... 0]^T $ where the transformation H is: $ H = I - tau v v^*$ and the vector v is: $ v^T = [1 essential^T] $

The essential part of the vector v is stored in *this.

On output:

Parameters
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

Definition at line 43 of file Householder.h.

◆ matrix() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix ( )
inline

Definition at line 314 of file MatrixBase.h.

◆ matrix() [2/2]

template<typename Derived >
const EIGEN_DEVICE_FUNC MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix ( ) const
inline

Definition at line 315 of file MatrixBase.h.

◆ matrixFunction()

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::matrixFunction ( StemFunction  f) const

Helper function for the unsupported MatrixFunctions module.

Definition at line 529 of file MatrixFunction.h.

◆ noalias()

template<typename Derived >
NoAlias< Derived, MatrixBase > EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::noalias
Returns
a pseudo expression of *this with an operator= assuming no aliasing between *this and the source expression.

More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only useful when the source expression contains a matrix product.

Here are some examples where noalias is useful:

D.noalias() = A * B;
D.noalias() += A.transpose() * B;
D.noalias() -= 2 * A * B.adjoint();

On the other hand the following example will lead to a wrong result:

A.noalias() = A * B;

because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:

A = A * B;
See also
class NoAlias

Definition at line 102 of file NoAlias.h.

◆ norm()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::norm
Returns
, for vectors, the l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this with itself.
See also
lpNorm(), dot(), squaredNorm()

Definition at line 108 of file Dot.h.

◆ normalize()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::normalize

Normalizes the vector, i.e. divides it by its own norm.

\only_for_vectors

Warning
If the input vector is too small (i.e., this->norm()==0), then *this is left unchanged.
See also
norm(), normalized()

Definition at line 145 of file Dot.h.

◆ normalized()

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::normalized
Returns
an expression of the quotient of *this by its own norm.
Warning
If the input vector is too small (i.e., this->norm()==0), then this function returns a copy of the input.

\only_for_vectors

See also
norm(), normalize()

Definition at line 124 of file Dot.h.

◆ operator!=()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool Eigen::MatrixBase< Derived >::operator!= ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator==

Definition at line 298 of file MatrixBase.h.

◆ operator*() [1/3]

template<typename Derived >
template<typename DiagonalDerived >
const EIGEN_DEVICE_FUNC Product< Derived, DiagonalDerived, LazyProduct > Eigen::MatrixBase< Derived >::operator* ( const DiagonalBase< DiagonalDerived > &  a_diagonal) const
inline
Returns
the diagonal matrix product of *this by the diagonal matrix diagonal.

Definition at line 21 of file DiagonalProduct.h.

◆ operator*() [2/3]

template<typename Derived >
template<typename OtherDerived >
const EIGEN_DEVICE_FUNC Product<Derived,OtherDerived> Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const

◆ operator*() [3/3]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Product<Derived, OtherDerived> Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const
Returns
the matrix product of *this and other.
Note
If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
See also
lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()

Definition at line 399 of file GeneralProduct.h.

◆ operator*=()

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator*= ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other.

Returns
a reference to *this

Example:

Matrix3f A = Matrix3f::Random(3,3), B;
B << 0,1,0,
0,0,1,
1,0,0;
cout << "At start, A = " << endl << A << endl;
A *= B;
cout << "After A *= B, A = " << endl << A << endl;
A.applyOnTheRight(B); // equivalent to A *= B
cout << "After applyOnTheRight, A = " << endl << A << endl;

Output:

 

Definition at line 515 of file MatrixBase.h.

◆ operator+=() [1/2]

template<typename Derived >
template<typename OtherDerived >
Derived& Eigen::MatrixBase< Derived >::operator+= ( const ArrayBase< OtherDerived > &  )
inlineprotected

Definition at line 493 of file MatrixBase.h.

◆ operator+=() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator+= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this + other.

Returns
a reference to *this

Definition at line 175 of file CwiseBinaryOp.h.

◆ operator-=() [1/2]

template<typename Derived >
template<typename OtherDerived >
Derived& Eigen::MatrixBase< Derived >::operator-= ( const ArrayBase< OtherDerived > &  )
inlineprotected

Definition at line 496 of file MatrixBase.h.

◆ operator-=() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator-= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this - other.

Returns
a reference to *this

Definition at line 162 of file CwiseBinaryOp.h.

◆ operator=() [1/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const DenseBase< OtherDerived > &  other)

Definition at line 64 of file Assign.h.

◆ operator=() [2/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)

Definition at line 73 of file Assign.h.

◆ operator=() [3/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived& Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)

◆ operator=() [4/6]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const MatrixBase< Derived > &  other)

Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)

Definition at line 55 of file Assign.h.

◆ operator=() [5/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)

Definition at line 82 of file Assign.h.

◆ operator=() [6/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived& Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)

◆ operator==()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool Eigen::MatrixBase< Derived >::operator== ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if each coefficients of *this and other are all exactly equal.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator!=

Definition at line 290 of file MatrixBase.h.

◆ operatorNorm()

template<typename Derived >
MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::operatorNorm
inline

Computes the L2 operator norm.

Returns
Operator norm of the matrix.

\eigenvalues_module This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix $ A $ is defined to be

\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]

where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix $ A^*A $.

The current implementation uses the eigenvalues of $ A^*A $, as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

MatrixXd ones = MatrixXd::Ones(3,3);
cout << "The operator norm of the 3x3 matrix of ones is "
<< ones.operatorNorm() << endl;

Output:

See also
SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()

Definition at line 120 of file MatrixBaseEigenvalues.h.

◆ partialPivLu()

template<typename Derived >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::partialPivLu
inline

\lu_module

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU

Definition at line 602 of file PartialPivLU.h.

◆ selfadjointView() [1/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( )

◆ selfadjointView() [2/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( )
Returns
an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix

The parameter UpLo can be either Upper or Lower

Example:

Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the symmetric matrix extracted from the upper part of m:" << endl
<< Matrix3i(m.selfadjointView<Upper>()) << endl;
cout << "Here is the symmetric matrix extracted from the lower part of m:" << endl
<< Matrix3i(m.selfadjointView<Lower>()) << endl;

Output:

See also
class SelfAdjointView

Definition at line 358 of file SelfAdjointView.h.

◆ selfadjointView() [3/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

◆ selfadjointView() [4/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

This is the const version of MatrixBase::selfadjointView()

Definition at line 341 of file SelfAdjointView.h.

◆ setIdentity() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity

Writes the identity expression (not necessarily square) into *this.

Example:

Matrix4i m = Matrix4i::Zero();
m.block<3,3>(1,0).setIdentity();
cout << m << endl;

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()

Definition at line 873 of file CwiseNullaryOp.h.

◆ setIdentity() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( Index  rows,
Index  cols 
)

Resizes to the given size, and writes the identity expression (not necessarily square) into *this.

Parameters
rowsthe new number of rows
colsthe new number of columns

Example:

MatrixXf m;
m.setIdentity(3, 3);
cout << m << endl;

Output:

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()

Definition at line 889 of file CwiseNullaryOp.h.

◆ setUnit() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit ( Index  i)

Set the coefficients of *this to the i-th unit (basis) vector.

Parameters
iindex of the unique coefficient to be set to 1

\only_for_vectors

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index)

Definition at line 972 of file CwiseNullaryOp.h.

◆ setUnit() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit ( Index  newSize,
Index  i 
)

Resizes to the given newSize, and writes the i-th unit (basis) vector into *this.

Parameters
newSizethe new size of the vector
iindex of the unique coefficient to be set to 1

\only_for_vectors

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index)

Definition at line 991 of file CwiseNullaryOp.h.

◆ squaredNorm()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::squaredNorm
Returns
, for vectors, the squared l2 norm of *this, and for matrices the squared Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this with itself.
See also
dot(), norm(), lpNorm()

Definition at line 96 of file Dot.h.

◆ stableNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::stableNorm
inline
Returns
the l2 norm of *this avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s 2 - compute $ s \Vert \frac{*this}{s} \Vert $ in a standard way

For architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.

See also
norm(), blueNorm(), hypotNorm()

Definition at line 213 of file StableNorm.h.

◆ stableNormalize()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::stableNormalize

Normalizes the vector while avoid underflow and overflow

\only_for_vectors

This method is analogue to the normalize() method, but it reduces the risk of underflow and overflow when computing the norm.

Warning
If the input vector is too small (i.e., this->norm()==0), then *this is left unchanged.
See also
stableNorm(), stableNormalized(), normalize()

Definition at line 191 of file Dot.h.

◆ stableNormalized()

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::stableNormalized
Returns
an expression of the quotient of *this by its own norm while avoiding underflow and overflow.

\only_for_vectors

This method is analogue to the normalized() method, but it reduces the risk of underflow and overflow when computing the norm.

Warning
If the input vector is too small (i.e., this->norm()==0), then this function returns a copy of the input.
See also
stableNorm(), stableNormalize(), normalized()

Definition at line 167 of file Dot.h.

◆ trace()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::trace
Returns
the trace of *this, i.e. the sum of the coefficients on the main diagonal.

*this can be any matrix, not necessarily square.

See also
diagonal(), sum()

Definition at line 508 of file Redux.h.

◆ triangularView() [1/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( )

◆ triangularView() [2/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( )
Returns
an expression of a triangular view extracted from the current matrix

The parameter Mode can have the following values: Upper, StrictlyUpper, UnitUpper, Lower, StrictlyLower, UnitLower.

Example:

Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the upper-triangular matrix extracted from m:" << endl
<< Matrix3i(m.triangularView<Eigen::Upper>()) << endl;
cout << "Here is the strictly-upper-triangular matrix extracted from m:" << endl
<< Matrix3i(m.triangularView<Eigen::StrictlyUpper>()) << endl;
cout << "Here is the unit-lower-triangular matrix extracted from m:" << endl
<< Matrix3i(m.triangularView<Eigen::UnitLower>()) << endl;
// FIXME need to implement output for triangularViews (Bug 885)

Output:

See also
class TriangularView

Definition at line 644 of file TriangularMatrix.h.

◆ triangularView() [3/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

◆ triangularView() [4/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

This is the const version of MatrixBase::triangularView()

Definition at line 654 of file TriangularMatrix.h.

◆ Unit() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  i)
static
Returns
an expression of the i-th unit (basis) vector.

\only_for_vectors

This variant is for fixed-size vector only.

See also
MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 917 of file CwiseNullaryOp.h.

◆ Unit() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  newSize,
Index  i 
)
static
Returns
an expression of the i-th unit (basis) vector.

\only_for_vectors

See also
MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 902 of file CwiseNullaryOp.h.

◆ UnitW()

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitW
static
Returns
an expression of the W axis unit vector (0,0,0,1)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 960 of file CwiseNullaryOp.h.

◆ UnitX()

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitX
static
Returns
an expression of the X axis unit vector (1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 930 of file CwiseNullaryOp.h.

◆ UnitY()

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitY
static
Returns
an expression of the Y axis unit vector (0,1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 940 of file CwiseNullaryOp.h.

◆ UnitZ()

template<typename Derived >
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitZ
static
Returns
an expression of the Z axis unit vector (0,0,1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 950 of file CwiseNullaryOp.h.


The documentation for this class was generated from the following files:
w
RowVector3d w
Definition: Matrix_resize_int.cpp:3
D
MatrixXcd D
Definition: EigenSolver_EigenSolver_MatrixType.cpp:14
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Eigen::MatrixBase::asDiagonal
const EIGEN_DEVICE_FUNC DiagonalWrapper< const Derived > asDiagonal() const
Definition: DiagonalMatrix.h:325
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
B
Definition: test_numpy_dtypes.cpp:299
Eigen::Upper
@ Upper
Definition: Constants.h:211
Eigen::StrictlyUpper
@ StrictlyUpper
Definition: Constants.h:223
Eigen::MatrixBase::inverse
const EIGEN_DEVICE_FUNC Inverse< Derived > inverse() const
Definition: InverseImpl.h:348
A
Definition: test_numpy_dtypes.cpp:298
eivals
VectorXcd eivals
Definition: MatrixBase_eigenvalues.cpp:2
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1
Eigen::Lower
@ Lower
Definition: Constants.h:209
Eigen::MatrixBase::determinant
EIGEN_DEVICE_FUNC Scalar determinant() const
Definition: Determinant.h:108
v
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
Eigen::DenseBase::transpose
EIGEN_DEVICE_FUNC TransposeReturnType transpose()
Definition: Transpose.h:182
Eigen::MatrixBase
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
Eigen::UnitLower
@ UnitLower
Definition: Constants.h:217
Eigen::MatrixBase::setIdentity
EIGEN_DEVICE_FUNC Derived & setIdentity()
Definition: CwiseNullaryOp.h:873
ones
MatrixXcf ones
Definition: ComplexEigenSolver_eigenvalues.cpp:1


gtsam
Author(s):
autogenerated on Sat Jan 4 2025 04:09:34