StableNorm.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_STABLENORM_H
11 #define EIGEN_STABLENORM_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename ExpressionType, typename Scalar>
18 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
19 {
20  Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
21 
22  if(maxCoeff>scale)
23  {
24  ssq = ssq * numext::abs2(scale/maxCoeff);
25  Scalar tmp = Scalar(1)/maxCoeff;
26  if(tmp > NumTraits<Scalar>::highest())
27  {
28  invScale = NumTraits<Scalar>::highest();
29  scale = Scalar(1)/invScale;
30  }
31  else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF
32  {
33  invScale = Scalar(1);
34  scale = maxCoeff;
35  }
36  else
37  {
38  scale = maxCoeff;
39  invScale = tmp;
40  }
41  }
42  else if(maxCoeff!=maxCoeff) // we got a NaN
43  {
44  scale = maxCoeff;
45  }
46 
47  // TODO if the maxCoeff is much much smaller than the current scale,
48  // then we can neglect this sub vector
49  if(scale>Scalar(0)) // if scale==0, then bl is 0
50  ssq += (bl*invScale).squaredNorm();
51 }
52 
53 template<typename VectorType, typename RealScalar>
55 {
56  typedef typename VectorType::Scalar Scalar;
57  const Index blockSize = 4096;
58 
59  typedef typename internal::nested_eval<VectorType,2>::type VectorTypeCopy;
60  typedef typename internal::remove_all<VectorTypeCopy>::type VectorTypeCopyClean;
61  const VectorTypeCopy copy(vec);
62 
63  enum {
64  CanAlign = ( (int(VectorTypeCopyClean::Flags)&DirectAccessBit)
65  || (int(internal::evaluator<VectorTypeCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
66  ) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
67  && (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
68  };
71  Index n = vec.size();
72 
74  if (bi>0)
75  internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale);
76  for (; bi<n; bi+=blockSize)
77  internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale);
78 }
79 
80 template<typename VectorType>
83 {
84  using std::sqrt;
85  using std::abs;
86 
87  Index n = vec.size();
88 
89  if(n==1)
90  return abs(vec.coeff(0));
91 
92  typedef typename VectorType::RealScalar RealScalar;
93  RealScalar scale(0);
94  RealScalar invScale(1);
95  RealScalar ssq(0); // sum of squares
96 
97  stable_norm_impl_inner_step(vec, ssq, scale, invScale);
98 
99  return scale * sqrt(ssq);
100 }
101 
102 template<typename MatrixType>
103 typename MatrixType::RealScalar
105 {
106  using std::sqrt;
107 
108  typedef typename MatrixType::RealScalar RealScalar;
109  RealScalar scale(0);
110  RealScalar invScale(1);
111  RealScalar ssq(0); // sum of squares
112 
113  for(Index j=0; j<mat.outerSize(); ++j)
114  stable_norm_impl_inner_step(mat.innerVector(j), ssq, scale, invScale);
115  return scale * sqrt(ssq);
116 }
117 
118 template<typename Derived>
121 {
122  typedef typename Derived::RealScalar RealScalar;
123  using std::pow;
124  using std::sqrt;
125  using std::abs;
126 
127  // This program calculates the machine-dependent constants
128  // bl, b2, slm, s2m, relerr overfl
129  // from the "basic" machine-dependent numbers
130  // nbig, ibeta, it, iemin, iemax, rbig.
131  // The following define the basic machine-dependent constants.
132  // For portability, the PORT subprograms "ilmaeh" and "rlmach"
133  // are used. For any specific computer, each of the assignment
134  // statements can be replaced
135  static const int ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
136  static const int it = NumTraits<RealScalar>::digits(); // number of base-beta digits in mantissa
137  static const int iemin = NumTraits<RealScalar>::min_exponent(); // minimum exponent
138  static const int iemax = NumTraits<RealScalar>::max_exponent(); // maximum exponent
139  static const RealScalar rbig = NumTraits<RealScalar>::highest(); // largest floating-point number
140  static const RealScalar b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(-((1-iemin)/2)))); // lower boundary of midrange
141  static const RealScalar b2 = RealScalar(pow(RealScalar(ibeta),RealScalar((iemax + 1 - it)/2))); // upper boundary of midrange
142  static const RealScalar s1m = RealScalar(pow(RealScalar(ibeta),RealScalar((2-iemin)/2))); // scaling factor for lower range
143  static const RealScalar s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(- ((iemax+it)/2)))); // scaling factor for upper range
144  static const RealScalar eps = RealScalar(pow(double(ibeta), 1-it));
145  static const RealScalar relerr = sqrt(eps); // tolerance for neglecting asml
146 
147  const Derived& vec(_vec.derived());
148  Index n = vec.size();
149  RealScalar ab2 = b2 / RealScalar(n);
150  RealScalar asml = RealScalar(0);
151  RealScalar amed = RealScalar(0);
152  RealScalar abig = RealScalar(0);
153 
154  for(Index j=0; j<vec.outerSize(); ++j)
155  {
156  for(typename Derived::InnerIterator iter(vec, j); iter; ++iter)
157  {
158  RealScalar ax = abs(iter.value());
159  if(ax > ab2) abig += numext::abs2(ax*s2m);
160  else if(ax < b1) asml += numext::abs2(ax*s1m);
161  else amed += numext::abs2(ax);
162  }
163  }
164  if(amed!=amed)
165  return amed; // we got a NaN
166  if(abig > RealScalar(0))
167  {
168  abig = sqrt(abig);
169  if(abig > rbig) // overflow, or *this contains INF values
170  return abig; // return INF
171  if(amed > RealScalar(0))
172  {
173  abig = abig/s2m;
174  amed = sqrt(amed);
175  }
176  else
177  return abig/s2m;
178  }
179  else if(asml > RealScalar(0))
180  {
181  if (amed > RealScalar(0))
182  {
183  abig = sqrt(amed);
184  amed = sqrt(asml) / s1m;
185  }
186  else
187  return sqrt(asml)/s1m;
188  }
189  else
190  return sqrt(amed);
191  asml = numext::mini(abig, amed);
192  abig = numext::maxi(abig, amed);
193  if(asml <= abig*relerr)
194  return abig;
195  else
196  return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
197 }
198 
199 } // end namespace internal
200 
211 template<typename Derived>
214 {
215  return internal::stable_norm_impl(derived());
216 }
217 
227 template<typename Derived>
230 {
231  return internal::blueNorm_impl(*this);
232 }
233 
239 template<typename Derived>
242 {
243  if(size()==1)
244  return numext::abs(coeff(0,0));
245  else
246  return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
247 }
248 
249 } // end namespace Eigen
250 
251 #endif // EIGEN_STABLENORM_H
gtsam.examples.DogLegOptimizerExample.int
int
Definition: DogLegOptimizerExample.py:111
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
simple_graph::b1
Vector2 b1(2, -1)
Eigen::EigenBase::derived
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
MatrixType
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
Eigen::internal::stable_norm_impl_inner_step
void stable_norm_impl_inner_step(const VectorType &vec, RealScalar &ssq, RealScalar &scale, RealScalar &invScale)
Definition: StableNorm.h:54
Eigen::EigenBase
Definition: EigenBase.h:29
simple_graph::b2
Vector2 b2(4, -5)
type
Definition: pytypes.h:1525
copy
int EIGEN_BLAS_FUNC() copy(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Definition: level1_impl.h:29
mat
MatrixXf mat
Definition: Tutorial_AdvancedInitialization_CommaTemporary.cpp:1
Eigen::DirectAccessBit
const unsigned int DirectAccessBit
Definition: Constants.h:155
EIGEN_MAX_STATIC_ALIGN_BYTES
#define EIGEN_MAX_STATIC_ALIGN_BYTES
Definition: ConfigureVectorization.h:128
size
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
Eigen::internal::scalar_hypot_op
Definition: ForwardDeclarations.h:210
n
int n
Definition: BiCGSTAB_simple.cpp:1
Eigen::MatrixBase::hypotNorm
RealScalar hypotNorm() const
Definition: StableNorm.h:241
Eigen::internal::true_type
Definition: Meta.h:96
relerr
Derived::RealScalar relerr(const MatrixBase< Derived > &A, const MatrixBase< OtherDerived > &B)
Definition: matrix_functions.h:64
scale
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics scale
Definition: gnuplot_common_settings.hh:54
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
EIGEN_STACK_ALLOCATION_LIMIT
#define EIGEN_STACK_ALLOCATION_LIMIT
Definition: Macros.h:54
Eigen::numext::mini
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition: Eigen/src/Core/MathFunctions.h:1085
ConstSegmentReturnType
const typedef VectorBlock< const Derived > ConstSegmentReturnType
Definition: BlockMethods.h:39
iterator::value
object value
Definition: pytypes.h:1522
Eigen::Triplet< double >
Eigen::internal::evaluator
Definition: CoreEvaluators.h:90
ceres::pow
Jet< T, N > pow(const Jet< T, N > &f, double g)
Definition: jet.h:570
Eigen::internal::blueNorm_impl
NumTraits< typename traits< Derived >::Scalar >::Real blueNorm_impl(const EigenBase< Derived > &_vec)
Definition: StableNorm.h:120
RealScalar
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:47
Eigen::numext::abs2
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: Eigen/src/Core/MathFunctions.h:1294
Eigen::internal::stable_norm_kernel
void stable_norm_kernel(const ExpressionType &bl, Scalar &ssq, Scalar &scale, Scalar &invScale)
Definition: StableNorm.h:18
iter
iterator iter(handle obj)
Definition: pytypes.h:2475
Eigen::internal::conditional
Definition: Meta.h:109
Real
mp::number< mp::cpp_dec_float< 100 >, mp::et_on > Real
Definition: boostmultiprec.cpp:78
Eigen::internal::first_default_aligned
static Index first_default_aligned(const DenseBase< Derived > &m)
Definition: DenseCoeffsBase.h:650
Eigen::numext::abs
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Real >::type abs(const T &x)
Definition: Eigen/src/Core/MathFunctions.h:1511
abs
#define abs(x)
Definition: datatypes.h:17
internal
Definition: BandTriangularSolver.h:13
Eigen::numext::maxi
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: Eigen/src/Core/MathFunctions.h:1093
VectorType
Definition: FFTW.cpp:65
Eigen::MatrixBase::stableNorm
RealScalar stableNorm() const
Definition: StableNorm.h:213
Eigen::internal::enable_if
Definition: Meta.h:273
Eigen::internal::stable_norm_impl
VectorType::RealScalar stable_norm_impl(const VectorType &vec, typename enable_if< VectorType::IsVectorAtCompileTime >::type *=0)
Definition: StableNorm.h:82
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:232
ceres::sqrt
Jet< T, N > sqrt(const Jet< T, N > &f)
Definition: jet.h:418
cwiseAbs
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE CwiseAbsReturnType cwiseAbs() const
Definition: MatrixCwiseUnaryOps.h:33
Eigen::MatrixBase::blueNorm
RealScalar blueNorm() const
Definition: StableNorm.h:229
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:04:52