12 #ifndef EIGEN_COMPLEX_SCHUR_H    13 #define EIGEN_COMPLEX_SCHUR_H    56       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    57       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    58       Options = MatrixType::Options,
    59       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    60       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    64     typedef typename MatrixType::Scalar 
Scalar;
    66     typedef typename MatrixType::Index 
Index;
    98         m_isInitialized(false),
    99         m_matUisUptodate(false),
   113       : m_matT(matrix.rows(),matrix.cols()),
   114         m_matU(matrix.rows(),matrix.cols()),
   115         m_hess(matrix.rows()),
   116         m_isInitialized(false),
   117         m_matUisUptodate(false),
   120       compute(matrix, computeU);
   139       eigen_assert(m_isInitialized && 
"ComplexSchur is not initialized.");
   140       eigen_assert(m_matUisUptodate && 
"The matrix U has not been computed during the ComplexSchur decomposition.");
   163       eigen_assert(m_isInitialized && 
"ComplexSchur is not initialized.");
   189     ComplexSchur& compute(
const MatrixType& matrix, 
bool computeU = 
true);
   208     template<
typename HessMatrixType, 
typename OrthMatrixType>
   209     ComplexSchur& computeFromHessenberg(
const HessMatrixType& matrixH, 
const OrthMatrixType& matrixQ,  
bool computeU=
true);
   217       eigen_assert(m_isInitialized && 
"ComplexSchur is not initialized.");
   228       m_maxIters = maxIters;
   243     static const int m_maxIterationsPerRow = 30;
   254     bool subdiagonalEntryIsNeglegible(Index i);
   255     ComplexScalar computeShift(Index iu, Index iter);
   256     void reduceToTriangularForm(
bool computeU);
   264 inline bool 
ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
   266   RealScalar 
d = numext::norm1(m_matT.
coeff(i,i)) + numext::norm1(m_matT.
coeff(i+1,i+1));
   267   RealScalar sd = numext::norm1(m_matT.
coeff(i+1,i));
   270     m_matT.
coeffRef(i+1,i) = ComplexScalar(0);
   278 template<
typename MatrixType>
   282   if (iter == 10 || iter == 20) 
   291   RealScalar normt = t.cwiseAbs().sum();
   294   ComplexScalar b = t.
coeff(0,1) * t.
coeff(1,0);
   295   ComplexScalar c = t.
coeff(0,0) - t.
coeff(1,1);
   296   ComplexScalar disc = 
sqrt(c*c + RealScalar(4)*b);
   297   ComplexScalar det = t.
coeff(0,0) * t.
coeff(1,1) - b;
   298   ComplexScalar trace = t.
coeff(0,0) + t.
coeff(1,1);
   299   ComplexScalar eival1 = (trace + disc) / RealScalar(2);
   300   ComplexScalar eival2 = (trace - disc) / RealScalar(2);
   302   if(numext::norm1(eival1) > numext::norm1(eival2))
   303     eival2 = det / eival1;
   305     eival1 = det / eival2;
   308   if(numext::norm1(eival1-t.
coeff(1,1)) < numext::norm1(eival2-t.
coeff(1,1)))
   309     return normt * eival1;
   311     return normt * eival2;
   315 template<
typename MatrixType>
   318   m_matUisUptodate = 
false;
   321   if(matrix.cols() == 1)
   323     m_matT = matrix.template cast<ComplexScalar>();
   324     if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
   326     m_isInitialized = 
true;
   327     m_matUisUptodate = computeU;
   332   computeFromHessenberg(m_matT, m_matU, computeU);
   336 template<
typename MatrixType>
   337 template<
typename HessMatrixType, 
typename OrthMatrixType>
   343   reduceToTriangularForm(computeU);
   349 template<
typename MatrixType, 
bool IsComplex>
   350 struct complex_schur_reduce_to_hessenberg
   361 template<
typename MatrixType>
   375       _this.
m_matU = Q.template cast<ComplexScalar>();
   383 template<
typename MatrixType>
   386   Index maxIters = m_maxIters;
   388     maxIters = m_maxIterationsPerRow * m_matT.
rows();
   394   Index iu = m_matT.
cols() - 1;
   404       if(!subdiagonalEntryIsNeglegible(iu-1)) 
break;
   415     if(totalIter > maxIters) 
break;
   419     while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
   428     ComplexScalar shift = computeShift(iu, iter);
   431     m_matT.rightCols(m_matT.
cols()-il).applyOnTheLeft(il, il+1, rot.
adjoint());
   432     m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
   433     if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
   435     for(Index i=il+1 ; i<iu ; i++)
   438       m_matT.
coeffRef(i+1,i-1) = ComplexScalar(0);
   439       m_matT.rightCols(m_matT.
cols()-i).applyOnTheLeft(i, i+1, rot.
adjoint());
   440       m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
   441       if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
   445   if(totalIter <= maxIters)
   450   m_isInitialized = 
true;
   451   m_matUisUptodate = computeU;
   456 #endif // EIGEN_COMPLEX_SCHUR_H 
HouseholderSequenceType matrixQ() const 
Reconstructs the orthogonal matrix Q in the decomposition. 
MatrixHReturnType matrixH() const 
Constructs the Hessenberg matrix H in the decomposition. 
NumTraits< Scalar >::Real RealScalar
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed. 
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
ComplexSchur & compute(const MatrixType &matrix, bool computeU=true)
Computes Schur decomposition of given matrix. 
Rotation given by a cosine-sine pair. 
HessenbergDecomposition< MatrixType > m_hess
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
ComplexSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU=true)
Compute Schur decomposition from a given Hessenberg matrix. 
std::complex< RealScalar > ComplexScalar
Complex scalar type for _MatrixType. 
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > ComplexMatrixType
Type for the matrices in the Schur decomposition. 
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType. 
EIGEN_STRONG_INLINE Index rows() const 
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > abs() const 
RealReturnType real() const 
static void run(ComplexSchur< MatrixType > &_this, const MatrixType &matrix, bool computeU)
EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const 
HessenbergDecomposition & compute(const MatrixType &matrix)
Computes Hessenberg decomposition of given matrix. 
EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
Index getMaxIterations()
Returns the maximum number of iterations. 
JacobiRotation adjoint() const 
ComplexScalar computeShift(Index iu, Index iter)
const ComplexMatrixType & matrixT() const 
Returns the triangular matrix in the Schur decomposition. 
static void run(ComplexSchur< MatrixType > &_this, const MatrixType &matrix, bool computeU)
ComplexSchur(Index size=RowsAtCompileTime==Dynamic?1:RowsAtCompileTime)
Default constructor. 
ComplexSchur(const MatrixType &matrix, bool computeU=true)
Constructor; computes Schur decomposition of given matrix. 
void reduceToTriangularForm(bool computeU)
ComputationInfo info() const 
Reports whether previous computation was successful. 
const CwiseUnaryOp< internal::scalar_sqrt_op< Scalar >, const Derived > sqrt() const 
EIGEN_STRONG_INLINE Index cols() const 
Performs a complex Schur decomposition of a real or complex square matrix. 
const ComplexMatrixType & matrixU() const 
Returns the unitary matrix in the Schur decomposition.