11 #ifndef EIGEN_HESSENBERGDECOMPOSITION_H    12 #define EIGEN_HESSENBERGDECOMPOSITION_H    19 template<
typename MatrixType>
    65       Size = MatrixType::RowsAtCompileTime,
    67       Options = MatrixType::Options,
    68       MaxSize = MatrixType::MaxRowsAtCompileTime,
    73     typedef typename MatrixType::Scalar 
Scalar;
    74     typedef typename MatrixType::Index 
Index;
   101       : m_matrix(size,size),
   103         m_isInitialized(false)
   106         m_hCoeffs.resize(size-1);
   120         m_temp(matrix.rows()),
   121         m_isInitialized(false)
   125         m_isInitialized = 
true;
   128       m_hCoeffs.resize(matrix.rows()-1,1);
   129       _compute(m_matrix, m_hCoeffs, m_temp);
   130       m_isInitialized = 
true;
   155         m_isInitialized = 
true;
   158       m_hCoeffs.resize(matrix.rows()-1,1);
   159       _compute(m_matrix, m_hCoeffs, m_temp);
   160       m_isInitialized = 
true;
   179       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   214       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   234       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   235       return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
   236              .setLength(m_matrix.rows() - 1)
   262       eigen_assert(m_isInitialized && 
"HessenbergDecomposition is not initialized.");
   263       return MatrixHReturnType(*
this);
   270     static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
   291 template<
typename MatrixType>
   295   Index n = matA.rows();
   297   for (
Index i = 0; i<n-1; ++i)
   300     Index remainingSize = n-i-1;
   303     matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
   304     matA.col(i).coeffRef(i+1) = beta;
   311     matA.bottomRightCorner(remainingSize, remainingSize)
   312         .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.
coeffRef(0));
   315     matA.rightCols(remainingSize)
   316         .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.
coeffRef(0));
   337 template<
typename MatrixType> 
struct HessenbergDecompositionMatrixHReturnType
   338 : 
public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
   340     typedef typename MatrixType::Index 
Index;
   353     template <
typename ResultType>
   354     inline void evalTo(ResultType& result)
 const   356       result = m_hess.packedMatrix();
   357       Index n = result.rows();
   359         result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().
setZero();
   362     Index 
rows()
 const { 
return m_hess.packedMatrix().rows(); }
   363     Index 
cols()
 const { 
return m_hess.packedMatrix().cols(); }
   373 #endif // EIGEN_HESSENBERGDECOMPOSITION_H 
const MatrixType & packedMatrix() const 
Returns the internal representation of the decomposition. 
HouseholderSequenceType matrixQ() const 
Reconstructs the orthogonal matrix Q in the decomposition. 
MatrixHReturnType matrixH() const 
Constructs the Hessenberg matrix H in the decomposition. 
static void _compute(MatrixType &matA, CoeffVectorType &hCoeffs, VectorType &temp)
CoeffVectorType m_hCoeffs
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
internal::HessenbergDecompositionMatrixHReturnType< MatrixType > MatrixHReturnType
_MatrixType MatrixType
Synonym for the template parameter _MatrixType. 
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType. 
Sequence of Householder reflections acting on subspaces with decreasing size. 
Matrix< Scalar, 1, Size, Options|RowMajor, 1, MaxSize > VectorType
void evalTo(ResultType &result) const 
Hessenberg matrix in decomposition. 
NumTraits< Scalar >::Real RealScalar
HessenbergDecomposition & compute(const MatrixType &matrix)
Computes Hessenberg decomposition of given matrix. 
EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition< MatrixType > &hess)
Constructor. 
EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols)
const HessenbergDecomposition< MatrixType > & m_hess
HessenbergDecomposition(const MatrixType &matrix)
Constructor; computes Hessenberg decomposition of given matrix. 
Expression type for return value of HessenbergDecomposition::matrixH() 
HessenbergDecomposition(Index size=Size==Dynamic?2:Size)
Default constructor; the decomposition will be computed later. 
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation. 
HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > HouseholderSequenceType
Return type of matrixQ() 
Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > CoeffVectorType
Type for vector of Householder coefficients. 
const CoeffVectorType & householderCoefficients() const 
Returns the Householder coefficients.