16 template<
typename MatrixType,
int UpLo>
struct LLT_Traits;
52 template<
typename _MatrixType,
int _UpLo>
class LLT 57 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
58 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
59 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61 typedef typename MatrixType::Scalar
Scalar;
68 AlignmentMask = int(PacketSize)-1,
80 LLT() : m_matrix(), m_isInitialized(false) {}
88 explicit LLT(Index
size) : m_matrix(size, size),
89 m_isInitialized(false) {}
91 template<
typename InputType>
93 : m_matrix(matrix.rows(), matrix.cols()),
94 m_isInitialized(false)
106 template<
typename InputType>
108 : m_matrix(matrix.derived()),
109 m_isInitialized(false)
115 inline typename Traits::MatrixU
matrixU()
const 117 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
118 return Traits::getU(m_matrix);
122 inline typename Traits::MatrixL
matrixL()
const 124 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
125 return Traits::getL(m_matrix);
138 template<
typename Rhs>
142 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
144 &&
"LLT::solve(): invalid number of rows of the right hand side matrix b");
148 template<
typename Derived>
151 template<
typename InputType>
159 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
170 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
174 MatrixType reconstructedMatrix()
const;
184 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
195 inline Index
rows()
const {
return m_matrix.rows(); }
196 inline Index
cols()
const {
return m_matrix.cols(); }
198 template<
typename VectorType>
199 LLT rankUpdate(
const VectorType& vec,
const RealScalar& sigma = 1);
201 #ifndef EIGEN_PARSED_BY_DOXYGEN 202 template<
typename RhsType,
typename DstType>
204 void _solve_impl(
const RhsType &rhs, DstType &dst)
const;
228 template<
typename MatrixType,
typename VectorType>
232 typedef typename MatrixType::Scalar Scalar;
233 typedef typename MatrixType::RealScalar RealScalar;
240 Index n = mat.cols();
250 temp =
sqrt(sigma) * vec;
252 for(
Index i=0; i<n; ++i)
260 ColXprSegment x(mat.col(i).tail(rs));
261 TempVecSegment
y(temp.tail(rs));
270 for(
Index j=0; j<n; ++j)
274 Scalar wj = temp.coeff(j);
276 RealScalar
gamma = dj*beta + swj2;
278 RealScalar x = dj + swj2/beta;
279 if (x<=RealScalar(0))
281 RealScalar nLjj =
sqrt(x);
282 mat.coeffRef(j,j) = nLjj;
289 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
291 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*
numext::conj(wj)/
gamma)*temp.tail(rs);
301 template<
typename MatrixType>
317 if (k>0) x -= A10.squaredNorm();
318 if (x<=RealScalar(0))
320 mat.coeffRef(k,k) = x =
sqrt(x);
321 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
327 template<
typename MatrixType>
335 Index blockSize = size/8;
336 blockSize = (blockSize/16)*16;
345 Index bs = (std::min)(blockSize, size-k);
346 Index rs = size - k - bs;
352 if((ret=unblocked(A11))>=0)
return k+ret;
353 if(rs>0) A11.adjoint().template triangularView<Upper>().
template solveInPlace<OnTheRight>(A21);
359 template<
typename MatrixType,
typename VectorType>
370 template<
typename MatrixType>
376 template<
typename MatrixType>
382 template<
typename MatrixType,
typename VectorType>
394 static inline MatrixL
getL(
const MatrixType& m) {
return MatrixL(m); }
395 static inline MatrixU
getU(
const MatrixType& m) {
return MatrixU(m.adjoint()); }
404 static inline MatrixL
getL(
const MatrixType& m) {
return MatrixL(m.adjoint()); }
405 static inline MatrixU
getU(
const MatrixType& m) {
return MatrixU(m); }
419 template<
typename MatrixType,
int _UpLo>
420 template<
typename InputType>
423 check_template_parameters();
427 m_matrix.resize(size, size);
436 abs_col_sum = m_matrix.col(
col).tail(size -
col).template lpNorm<1>() + m_matrix.row(
col).head(
col).template lpNorm<1>();
438 abs_col_sum = m_matrix.col(
col).head(
col).template lpNorm<1>() + m_matrix.row(
col).tail(size -
col).template lpNorm<1>();
439 if (abs_col_sum > m_l1_norm)
440 m_l1_norm = abs_col_sum;
443 m_isInitialized =
true;
444 bool ok = Traits::inplace_decomposition(m_matrix);
455 template<
typename _MatrixType,
int _UpLo>
456 template<
typename VectorType>
470 #ifndef EIGEN_PARSED_BY_DOXYGEN 471 template<
typename _MatrixType,
int _UpLo>
472 template<
typename RhsType,
typename DstType>
490 template<
typename MatrixType,
int _UpLo>
491 template<
typename Derived>
494 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
496 matrixL().solveInPlace(bAndX);
497 matrixU().solveInPlace(bAndX);
503 template<
typename MatrixType,
int _UpLo>
506 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
507 return matrixL() * matrixL().adjoint().toDenseMatrix();
514 template<
typename Derived>
525 template<
typename MatrixType,
unsigned int UpLo>
534 #endif // EIGEN_LLT_H const LLT< PlainObject, UpLo > llt() const
#define EIGEN_STRONG_INLINE
MatrixType reconstructedMatrix() const
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
VectorBlock< Derived > SegmentReturnType
EIGEN_DEVICE_FUNC RealReturnType real() const
MatrixType::StorageIndex StorageIndex
const TriangularView< const MatrixType, Lower > MatrixL
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Expression of the transpose of a matrix.
Traits::MatrixU matrixU() const
MatrixType::Scalar Scalar
LLT(Index size)
Default Constructor with memory preallocation.
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1,!IsRowMajor > ColXpr
const MatrixType & matrixLLT() const
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Rotation given by a cosine-sine pair.
static bool inplace_decomposition(MatrixType &m)
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
const TriangularView< const typename MatrixType::AdjointReturnType, Upper > MatrixU
const Solve< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const
LLT(const EigenBase< InputType > &matrix)
Decomposition::RealScalar rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition &dec)
Reciprocal condition number estimator.
ComputationInfo info() const
Reports whether previous computation was successful.
void solveInPlace(MatrixBase< Derived > &bAndX) const
LLT(EigenBase< InputType > &matrix)
Constructs a LDLT factorization from a given matrix.
static EIGEN_STRONG_INLINE Index blocked(MatrixType &mat)
LLT rankUpdate(const VectorType &vec, const RealScalar &sigma=1)
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half() max(const half &a, const half &b)
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col().
const mpreal gamma(const mpreal &x, mp_rnd_t r=mpreal::get_default_rnd())
internal::LLT_Traits< MatrixType, UpLo > Traits
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
NumTraits< Scalar >::Real RealScalar
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
static void check_template_parameters()
EIGEN_DEVICE_FUNC Index cols() const
static Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
static Index unblocked(MatrixType &mat)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Abs2ReturnType abs2() const
static bool inplace_decomposition(MatrixType &m)
static Index llt_rank_update_lower(MatrixType &mat, const VectorType &vec, const typename MatrixType::RealScalar &sigma)
Expression of a fixed-size or dynamic-size block.
static EIGEN_STRONG_INLINE Index unblocked(MatrixType &mat)
static MatrixU getU(const MatrixType &m)
static MatrixU getU(const MatrixType &m)
static Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
Expression of a triangular part in a matrix.
void apply_rotation_in_the_plane(DenseBase< VectorX > &xpr_x, DenseBase< VectorY > &xpr_y, const JacobiRotation< OtherScalar > &j)
const TriangularView< const MatrixType, Upper > MatrixU
EIGEN_DEVICE_FUNC Index rows() const
LLT & compute(const EigenBase< InputType > &matrix)
static Index blocked(MatrixType &m)
const TriangularView< const typename MatrixType::AdjointReturnType, Lower > MatrixL
const LLT< PlainObject > llt() const
Pseudo expression representing a solving operation.
LLT()
Default Constructor.
Traits::MatrixL matrixL() const
static MatrixL getL(const MatrixType &m)
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
EIGEN_DEVICE_FUNC const Scalar & b
EIGEN_DEVICE_FUNC Derived & derived()
Base class for all dense matrices, vectors, and expressions.
static MatrixL getL(const MatrixType &m)
const LLT & adjoint() const
NumTraits< typename MatrixType::Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC void _solve_impl(const RhsType &rhs, DstType &dst) const
NumTraits< Scalar >::Real RealScalar