LLT.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LLT_H
11 #define EIGEN_LLT_H
12 
13 namespace Eigen {
14 
15 namespace internal{
16 template<typename MatrixType, int UpLo> struct LLT_Traits;
17 }
18 
48  /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
49  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
50  * the strict lower part does not have to store correct values.
51  */
52 template<typename _MatrixType, int _UpLo> class LLT
53 {
54  public:
55  typedef _MatrixType MatrixType;
56  enum {
57  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
58  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
59  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
60  };
61  typedef typename MatrixType::Scalar Scalar;
63  typedef Eigen::Index Index;
64  typedef typename MatrixType::StorageIndex StorageIndex;
65 
66  enum {
68  AlignmentMask = int(PacketSize)-1,
69  UpLo = _UpLo
70  };
71 
73 
80  LLT() : m_matrix(), m_isInitialized(false) {}
81 
88  explicit LLT(Index size) : m_matrix(size, size),
89  m_isInitialized(false) {}
90 
91  template<typename InputType>
92  explicit LLT(const EigenBase<InputType>& matrix)
93  : m_matrix(matrix.rows(), matrix.cols()),
94  m_isInitialized(false)
95  {
96  compute(matrix.derived());
97  }
98 
106  template<typename InputType>
107  explicit LLT(EigenBase<InputType>& matrix)
108  : m_matrix(matrix.derived()),
109  m_isInitialized(false)
110  {
111  compute(matrix.derived());
112  }
113 
115  inline typename Traits::MatrixU matrixU() const
116  {
117  eigen_assert(m_isInitialized && "LLT is not initialized.");
118  return Traits::getU(m_matrix);
119  }
120 
122  inline typename Traits::MatrixL matrixL() const
123  {
124  eigen_assert(m_isInitialized && "LLT is not initialized.");
125  return Traits::getL(m_matrix);
126  }
127 
138  template<typename Rhs>
139  inline const Solve<LLT, Rhs>
140  solve(const MatrixBase<Rhs>& b) const
141  {
142  eigen_assert(m_isInitialized && "LLT is not initialized.");
143  eigen_assert(m_matrix.rows()==b.rows()
144  && "LLT::solve(): invalid number of rows of the right hand side matrix b");
145  return Solve<LLT, Rhs>(*this, b.derived());
146  }
147 
148  template<typename Derived>
149  void solveInPlace(MatrixBase<Derived> &bAndX) const;
150 
151  template<typename InputType>
152  LLT& compute(const EigenBase<InputType>& matrix);
153 
157  RealScalar rcond() const
158  {
159  eigen_assert(m_isInitialized && "LLT is not initialized.");
160  eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
161  return internal::rcond_estimate_helper(m_l1_norm, *this);
162  }
163 
168  inline const MatrixType& matrixLLT() const
169  {
170  eigen_assert(m_isInitialized && "LLT is not initialized.");
171  return m_matrix;
172  }
173 
174  MatrixType reconstructedMatrix() const;
175 
176 
183  {
184  eigen_assert(m_isInitialized && "LLT is not initialized.");
185  return m_info;
186  }
187 
193  const LLT& adjoint() const { return *this; };
194 
195  inline Index rows() const { return m_matrix.rows(); }
196  inline Index cols() const { return m_matrix.cols(); }
197 
198  template<typename VectorType>
199  LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
200 
201  #ifndef EIGEN_PARSED_BY_DOXYGEN
202  template<typename RhsType, typename DstType>
203  EIGEN_DEVICE_FUNC
204  void _solve_impl(const RhsType &rhs, DstType &dst) const;
205  #endif
206 
207  protected:
208 
210  {
212  }
213 
218  MatrixType m_matrix;
219  RealScalar m_l1_norm;
222 };
223 
224 namespace internal {
225 
226 template<typename Scalar, int UpLo> struct llt_inplace;
227 
228 template<typename MatrixType, typename VectorType>
229 static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
230 {
231  using std::sqrt;
232  typedef typename MatrixType::Scalar Scalar;
233  typedef typename MatrixType::RealScalar RealScalar;
234  typedef typename MatrixType::ColXpr ColXpr;
235  typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
236  typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
237  typedef Matrix<Scalar,Dynamic,1> TempVectorType;
238  typedef typename TempVectorType::SegmentReturnType TempVecSegment;
239 
240  Index n = mat.cols();
241  eigen_assert(mat.rows()==n && vec.size()==n);
242 
243  TempVectorType temp;
244 
245  if(sigma>0)
246  {
247  // This version is based on Givens rotations.
248  // It is faster than the other one below, but only works for updates,
249  // i.e., for sigma > 0
250  temp = sqrt(sigma) * vec;
251 
252  for(Index i=0; i<n; ++i)
253  {
255  g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
256 
257  Index rs = n-i-1;
258  if(rs>0)
259  {
260  ColXprSegment x(mat.col(i).tail(rs));
261  TempVecSegment y(temp.tail(rs));
263  }
264  }
265  }
266  else
267  {
268  temp = vec;
269  RealScalar beta = 1;
270  for(Index j=0; j<n; ++j)
271  {
272  RealScalar Ljj = numext::real(mat.coeff(j,j));
273  RealScalar dj = numext::abs2(Ljj);
274  Scalar wj = temp.coeff(j);
275  RealScalar swj2 = sigma*numext::abs2(wj);
276  RealScalar gamma = dj*beta + swj2;
277 
278  RealScalar x = dj + swj2/beta;
279  if (x<=RealScalar(0))
280  return j;
281  RealScalar nLjj = sqrt(x);
282  mat.coeffRef(j,j) = nLjj;
283  beta += swj2/dj;
284 
285  // Update the terms of L
286  Index rs = n-j-1;
287  if(rs)
288  {
289  temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
290  if(gamma != 0)
291  mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
292  }
293  }
294  }
295  return -1;
296 }
297 
298 template<typename Scalar> struct llt_inplace<Scalar, Lower>
299 {
301  template<typename MatrixType>
302  static Index unblocked(MatrixType& mat)
303  {
304  using std::sqrt;
305 
306  eigen_assert(mat.rows()==mat.cols());
307  const Index size = mat.rows();
308  for(Index k = 0; k < size; ++k)
309  {
310  Index rs = size-k-1; // remaining size
311 
312  Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
313  Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
314  Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
315 
316  RealScalar x = numext::real(mat.coeff(k,k));
317  if (k>0) x -= A10.squaredNorm();
318  if (x<=RealScalar(0))
319  return k;
320  mat.coeffRef(k,k) = x = sqrt(x);
321  if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
322  if (rs>0) A21 /= x;
323  }
324  return -1;
325  }
326 
327  template<typename MatrixType>
328  static Index blocked(MatrixType& m)
329  {
330  eigen_assert(m.rows()==m.cols());
331  Index size = m.rows();
332  if(size<32)
333  return unblocked(m);
334 
335  Index blockSize = size/8;
336  blockSize = (blockSize/16)*16;
337  blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
338 
339  for (Index k=0; k<size; k+=blockSize)
340  {
341  // partition the matrix:
342  // A00 | - | -
343  // lu = A10 | A11 | -
344  // A20 | A21 | A22
345  Index bs = (std::min)(blockSize, size-k);
346  Index rs = size - k - bs;
347  Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
348  Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
349  Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
350 
351  Index ret;
352  if((ret=unblocked(A11))>=0) return k+ret;
353  if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
354  if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
355  }
356  return -1;
357  }
358 
359  template<typename MatrixType, typename VectorType>
360  static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
361  {
362  return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
363  }
364 };
365 
366 template<typename Scalar> struct llt_inplace<Scalar, Upper>
367 {
369 
370  template<typename MatrixType>
371  static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
372  {
373  Transpose<MatrixType> matt(mat);
375  }
376  template<typename MatrixType>
377  static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
378  {
379  Transpose<MatrixType> matt(mat);
381  }
382  template<typename MatrixType, typename VectorType>
383  static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
384  {
385  Transpose<MatrixType> matt(mat);
386  return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
387  }
388 };
389 
390 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
391 {
394  static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
395  static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
396  static bool inplace_decomposition(MatrixType& m)
398 };
399 
400 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
401 {
404  static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
405  static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
406  static bool inplace_decomposition(MatrixType& m)
408 };
409 
410 } // end namespace internal
411 
419 template<typename MatrixType, int _UpLo>
420 template<typename InputType>
422 {
423  check_template_parameters();
424 
425  eigen_assert(a.rows()==a.cols());
426  const Index size = a.rows();
427  m_matrix.resize(size, size);
428  m_matrix = a.derived();
429 
430  // Compute matrix L1 norm = max abs column sum.
431  m_l1_norm = RealScalar(0);
432  // TODO move this code to SelfAdjointView
433  for (Index col = 0; col < size; ++col) {
434  RealScalar abs_col_sum;
435  if (_UpLo == Lower)
436  abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
437  else
438  abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
439  if (abs_col_sum > m_l1_norm)
440  m_l1_norm = abs_col_sum;
441  }
442 
443  m_isInitialized = true;
444  bool ok = Traits::inplace_decomposition(m_matrix);
445  m_info = ok ? Success : NumericalIssue;
446 
447  return *this;
448 }
449 
455 template<typename _MatrixType, int _UpLo>
456 template<typename VectorType>
458 {
460  eigen_assert(v.size()==m_matrix.cols());
461  eigen_assert(m_isInitialized);
463  m_info = NumericalIssue;
464  else
465  m_info = Success;
466 
467  return *this;
468 }
469 
470 #ifndef EIGEN_PARSED_BY_DOXYGEN
471 template<typename _MatrixType,int _UpLo>
472 template<typename RhsType, typename DstType>
473 void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
474 {
475  dst = rhs;
476  solveInPlace(dst);
477 }
478 #endif
479 
490 template<typename MatrixType, int _UpLo>
491 template<typename Derived>
493 {
494  eigen_assert(m_isInitialized && "LLT is not initialized.");
495  eigen_assert(m_matrix.rows()==bAndX.rows());
496  matrixL().solveInPlace(bAndX);
497  matrixU().solveInPlace(bAndX);
498 }
499 
503 template<typename MatrixType, int _UpLo>
505 {
506  eigen_assert(m_isInitialized && "LLT is not initialized.");
507  return matrixL() * matrixL().adjoint().toDenseMatrix();
508 }
509 
514 template<typename Derived>
517 {
518  return LLT<PlainObject>(derived());
519 }
520 
525 template<typename MatrixType, unsigned int UpLo>
528 {
529  return LLT<PlainObject,UpLo>(m_matrix);
530 }
531 
532 } // end namespace Eigen
533 
534 #endif // EIGEN_LLT_H
const LLT< PlainObject, UpLo > llt() const
Definition: LLT.h:527
#define EIGEN_STRONG_INLINE
Definition: Macros.h:493
MatrixType reconstructedMatrix() const
Definition: LLT.h:504
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
VectorBlock< Derived > SegmentReturnType
Definition: BlockMethods.h:38
EIGEN_DEVICE_FUNC RealReturnType real() const
MatrixType::StorageIndex StorageIndex
Definition: LLT.h:64
const TriangularView< const MatrixType, Lower > MatrixL
Definition: LLT.h:392
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Definition: Jacobi.h:149
Expression of the transpose of a matrix.
Definition: Transpose.h:52
Traits::MatrixU matrixU() const
Definition: LLT.h:115
MatrixType::Scalar Scalar
Definition: LLT.h:61
LLT(Index size)
Default Constructor with memory preallocation.
Definition: LLT.h:88
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: LDLT.h:16
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1,!IsRowMajor > ColXpr
Definition: BlockMethods.h:14
const MatrixType & matrixLLT() const
Definition: LLT.h:168
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Rotation given by a cosine-sine pair.
static bool inplace_decomposition(MatrixType &m)
Definition: LLT.h:406
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
const TriangularView< const typename MatrixType::AdjointReturnType, Upper > MatrixU
Definition: LLT.h:393
const Solve< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: LLT.h:140
LLT(const EigenBase< InputType > &matrix)
Definition: LLT.h:92
Decomposition::RealScalar rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition &dec)
Reciprocal condition number estimator.
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: LLT.h:182
void solveInPlace(MatrixBase< Derived > &bAndX) const
Definition: LLT.h:492
LLT(EigenBase< InputType > &matrix)
Constructs a LDLT factorization from a given matrix.
Definition: LLT.h:107
static EIGEN_STRONG_INLINE Index blocked(MatrixType &mat)
Definition: LLT.h:377
_MatrixType MatrixType
Definition: LLT.h:55
bool m_isInitialized
Definition: LLT.h:220
LLT rankUpdate(const VectorType &vec, const RealScalar &sigma=1)
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half() max(const half &a, const half &b)
Definition: Half.h:438
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:838
Eigen::Index Index
Definition: LLT.h:63
const mpreal gamma(const mpreal &x, mp_rnd_t r=mpreal::get_default_rnd())
Definition: mpreal.h:2262
internal::LLT_Traits< MatrixType, UpLo > Traits
Definition: LLT.h:72
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:52
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
#define eigen_assert(x)
Definition: Macros.h:577
NumTraits< Scalar >::Real RealScalar
Definition: LLT.h:300
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
Definition: StaticAssert.h:182
static void check_template_parameters()
Definition: LLT.h:209
EIGEN_DEVICE_FUNC Index cols() const
Definition: EigenBase.h:62
static Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
Definition: LLT.h:383
static Index unblocked(MatrixType &mat)
Definition: LLT.h:302
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Abs2ReturnType abs2() const
RealScalar rcond() const
Definition: LLT.h:157
static bool inplace_decomposition(MatrixType &m)
Definition: LLT.h:396
static Index llt_rank_update_lower(MatrixType &mat, const VectorType &vec, const typename MatrixType::RealScalar &sigma)
Definition: LLT.h:229
ComputationInfo m_info
Definition: LLT.h:221
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
static EIGEN_STRONG_INLINE Index unblocked(MatrixType &mat)
Definition: LLT.h:371
static MatrixU getU(const MatrixType &m)
Definition: LLT.h:405
static MatrixU getU(const MatrixType &m)
Definition: LLT.h:395
static Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
Definition: LLT.h:360
Expression of a triangular part in a matrix.
void apply_rotation_in_the_plane(DenseBase< VectorX > &xpr_x, DenseBase< VectorY > &xpr_y, const JacobiRotation< OtherScalar > &j)
Definition: Jacobi.h:302
const TriangularView< const MatrixType, Upper > MatrixU
Definition: LLT.h:403
EIGEN_DEVICE_FUNC Index rows() const
Definition: EigenBase.h:59
LLT & compute(const EigenBase< InputType > &matrix)
static Index blocked(MatrixType &m)
Definition: LLT.h:328
const TriangularView< const typename MatrixType::AdjointReturnType, Lower > MatrixL
Definition: LLT.h:402
Index rows() const
Definition: LLT.h:195
const LLT< PlainObject > llt() const
Definition: LLT.h:516
RealScalar m_l1_norm
Definition: LLT.h:219
Pseudo expression representing a solving operation.
Definition: Solve.h:62
LLT()
Default Constructor.
Definition: LLT.h:80
Index cols() const
Definition: LLT.h:196
Traits::MatrixL matrixL() const
Definition: LLT.h:122
ComputationInfo
Definition: Constants.h:430
static MatrixL getL(const MatrixType &m)
Definition: LLT.h:394
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
Definition: StaticAssert.h:137
EIGEN_DEVICE_FUNC const Scalar & b
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:45
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
MatrixType m_matrix
Definition: LLT.h:218
static MatrixL getL(const MatrixType &m)
Definition: LLT.h:404
const LLT & adjoint() const
Definition: LLT.h:193
NumTraits< typename MatrixType::Scalar >::Real RealScalar
Definition: LLT.h:62
const T & y
EIGEN_DEVICE_FUNC void _solve_impl(const RhsType &rhs, DstType &dst) const
NumTraits< Scalar >::Real RealScalar
Definition: LLT.h:368


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:21