Jacobi.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_JACOBI_H
12 #define EIGEN_JACOBI_H
13 
14 namespace Eigen {
15 
34 template<typename Scalar> class JacobiRotation
35 {
36  public:
38 
41 
43  JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
44 
45  Scalar& c() { return m_c; }
46  Scalar c() const { return m_c; }
47  Scalar& s() { return m_s; }
48  Scalar s() const { return m_s; }
49 
52  {
53  using numext::conj;
54  return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s,
55  conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c)));
56  }
57 
60 
62  JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }
63 
64  template<typename Derived>
65  bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q);
66  bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);
67 
68  void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
69 
70  protected:
71  void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
72  void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);
73 
74  Scalar m_c, m_s;
75 };
76 
82 template<typename Scalar>
83 bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
84 {
85  using std::sqrt;
86  using std::abs;
87  typedef typename NumTraits<Scalar>::Real RealScalar;
88  RealScalar deno = RealScalar(2)*abs(y);
89  if(deno < (std::numeric_limits<RealScalar>::min)())
90  {
91  m_c = Scalar(1);
92  m_s = Scalar(0);
93  return false;
94  }
95  else
96  {
97  RealScalar tau = (x-z)/deno;
98  RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1));
99  RealScalar t;
100  if(tau>RealScalar(0))
101  {
102  t = RealScalar(1) / (tau + w);
103  }
104  else
105  {
106  t = RealScalar(1) / (tau - w);
107  }
108  RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
109  RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1));
110  m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n;
111  m_c = n;
112  return true;
113  }
114 }
115 
125 template<typename Scalar>
126 template<typename Derived>
128 {
129  return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
130 }
131 
148 template<typename Scalar>
149 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
150 {
152 }
153 
154 
155 // specialization for complexes
156 template<typename Scalar>
157 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
158 {
159  using std::sqrt;
160  using std::abs;
161  using numext::conj;
162 
163  if(q==Scalar(0))
164  {
165  m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1);
166  m_s = 0;
167  if(r) *r = m_c * p;
168  }
169  else if(p==Scalar(0))
170  {
171  m_c = 0;
172  m_s = -q/abs(q);
173  if(r) *r = abs(q);
174  }
175  else
176  {
177  RealScalar p1 = numext::norm1(p);
178  RealScalar q1 = numext::norm1(q);
179  if(p1>=q1)
180  {
181  Scalar ps = p / p1;
182  RealScalar p2 = numext::abs2(ps);
183  Scalar qs = q / p1;
184  RealScalar q2 = numext::abs2(qs);
185 
186  RealScalar u = sqrt(RealScalar(1) + q2/p2);
187  if(numext::real(p)<RealScalar(0))
188  u = -u;
189 
190  m_c = Scalar(1)/u;
191  m_s = -qs*conj(ps)*(m_c/p2);
192  if(r) *r = p * u;
193  }
194  else
195  {
196  Scalar ps = p / q1;
197  RealScalar p2 = numext::abs2(ps);
198  Scalar qs = q / q1;
199  RealScalar q2 = numext::abs2(qs);
200 
201  RealScalar u = q1 * sqrt(p2 + q2);
202  if(numext::real(p)<RealScalar(0))
203  u = -u;
204 
205  p1 = abs(p);
206  ps = p/p1;
207  m_c = p1/u;
208  m_s = -conj(ps) * (q/u);
209  if(r) *r = ps * u;
210  }
211  }
212 }
213 
214 // specialization for reals
215 template<typename Scalar>
216 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
217 {
218  using std::sqrt;
219  using std::abs;
220  if(q==Scalar(0))
221  {
222  m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
223  m_s = Scalar(0);
224  if(r) *r = abs(p);
225  }
226  else if(p==Scalar(0))
227  {
228  m_c = Scalar(0);
229  m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
230  if(r) *r = abs(q);
231  }
232  else if(abs(p) > abs(q))
233  {
234  Scalar t = q/p;
235  Scalar u = sqrt(Scalar(1) + numext::abs2(t));
236  if(p<Scalar(0))
237  u = -u;
238  m_c = Scalar(1)/u;
239  m_s = -t * m_c;
240  if(r) *r = p * u;
241  }
242  else
243  {
244  Scalar t = p/q;
245  Scalar u = sqrt(Scalar(1) + numext::abs2(t));
246  if(q<Scalar(0))
247  u = -u;
248  m_s = -Scalar(1)/u;
249  m_c = -t * m_s;
250  if(r) *r = q * u;
251  }
252 
253 }
254 
255 /****************************************************************************************
256 * Implementation of MatrixBase methods
257 ****************************************************************************************/
258 
259 namespace internal {
266 template<typename VectorX, typename VectorY, typename OtherScalar>
268 }
269 
276 template<typename Derived>
277 template<typename OtherScalar>
279 {
280  RowXpr x(this->row(p));
281  RowXpr y(this->row(q));
283 }
284 
291 template<typename Derived>
292 template<typename OtherScalar>
294 {
295  ColXpr x(this->col(p));
296  ColXpr y(this->col(q));
297  internal::apply_rotation_in_the_plane(x, y, j.transpose());
298 }
299 
300 namespace internal {
301 template<typename VectorX, typename VectorY, typename OtherScalar>
303 {
304  typedef typename VectorX::Scalar Scalar;
305  enum {
306  PacketSize = packet_traits<Scalar>::size,
307  OtherPacketSize = packet_traits<OtherScalar>::size
308  };
309  typedef typename packet_traits<Scalar>::type Packet;
310  typedef typename packet_traits<OtherScalar>::type OtherPacket;
311  eigen_assert(xpr_x.size() == xpr_y.size());
312  Index size = xpr_x.size();
313  Index incrx = xpr_x.derived().innerStride();
314  Index incry = xpr_y.derived().innerStride();
315 
316  Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0);
317  Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0);
318 
319  OtherScalar c = j.c();
320  OtherScalar s = j.s();
321  if (c==OtherScalar(1) && s==OtherScalar(0))
322  return;
323 
324  /*** dynamic-size vectorized paths ***/
325 
326  if(VectorX::SizeAtCompileTime == Dynamic &&
327  (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
328  (PacketSize == OtherPacketSize) &&
329  ((incrx==1 && incry==1) || PacketSize == 1))
330  {
331  // both vectors are sequentially stored in memory => vectorization
332  enum { Peeling = 2 };
333 
334  Index alignedStart = internal::first_default_aligned(y, size);
335  Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
336 
337  const OtherPacket pc = pset1<OtherPacket>(c);
338  const OtherPacket ps = pset1<OtherPacket>(s);
341 
342  for(Index i=0; i<alignedStart; ++i)
343  {
344  Scalar xi = x[i];
345  Scalar yi = y[i];
346  x[i] = c * xi + numext::conj(s) * yi;
347  y[i] = -s * xi + numext::conj(c) * yi;
348  }
349 
350  Scalar* EIGEN_RESTRICT px = x + alignedStart;
351  Scalar* EIGEN_RESTRICT py = y + alignedStart;
352 
353  if(internal::first_default_aligned(x, size)==alignedStart)
354  {
355  for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
356  {
357  Packet xi = pload<Packet>(px);
358  Packet yi = pload<Packet>(py);
359  pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
360  pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
361  px += PacketSize;
362  py += PacketSize;
363  }
364  }
365  else
366  {
367  Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
368  for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
369  {
370  Packet xi = ploadu<Packet>(px);
371  Packet xi1 = ploadu<Packet>(px+PacketSize);
372  Packet yi = pload <Packet>(py);
373  Packet yi1 = pload <Packet>(py+PacketSize);
374  pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
375  pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1)));
376  pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
377  pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1)));
378  px += Peeling*PacketSize;
379  py += Peeling*PacketSize;
380  }
381  if(alignedEnd!=peelingEnd)
382  {
383  Packet xi = ploadu<Packet>(x+peelingEnd);
384  Packet yi = pload <Packet>(y+peelingEnd);
385  pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
386  pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
387  }
388  }
389 
390  for(Index i=alignedEnd; i<size; ++i)
391  {
392  Scalar xi = x[i];
393  Scalar yi = y[i];
394  x[i] = c * xi + numext::conj(s) * yi;
395  y[i] = -s * xi + numext::conj(c) * yi;
396  }
397  }
398 
399  /*** fixed-size vectorized path ***/
400  else if(VectorX::SizeAtCompileTime != Dynamic &&
401  (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
402  (PacketSize == OtherPacketSize) &&
403  (EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment)>0)) // FIXME should be compared to the required alignment
404  {
405  const OtherPacket pc = pset1<OtherPacket>(c);
406  const OtherPacket ps = pset1<OtherPacket>(s);
409  Scalar* EIGEN_RESTRICT px = x;
410  Scalar* EIGEN_RESTRICT py = y;
411  for(Index i=0; i<size; i+=PacketSize)
412  {
413  Packet xi = pload<Packet>(px);
414  Packet yi = pload<Packet>(py);
415  pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
416  pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
417  px += PacketSize;
418  py += PacketSize;
419  }
420  }
421 
422  /*** non-vectorized path ***/
423  else
424  {
425  for(Index i=0; i<size; ++i)
426  {
427  Scalar xi = *x;
428  Scalar yi = *y;
429  *x = c * xi + numext::conj(s) * yi;
430  *y = -s * xi + numext::conj(c) * yi;
431  x += incrx;
432  y += incry;
433  }
434  }
435 }
436 
437 } // end namespace internal
438 
439 } // end namespace Eigen
440 
441 #endif // EIGEN_JACOBI_H
Scalar & c()
Definition: Jacobi.h:45
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
JacobiRotation operator*(const JacobiRotation &other)
Definition: Jacobi.h:51
EIGEN_DEVICE_FUNC RealReturnType real() const
Scalar c() const
Definition: Jacobi.h:46
void applyOnTheLeft(const EigenBase< OtherDerived > &other)
Definition: MatrixBase.h:523
void makeGivens(const Scalar &p, const Scalar &q, Scalar *z=0)
Definition: Jacobi.h:149
JacobiRotation(const Scalar &c, const Scalar &s)
Definition: Jacobi.h:43
void applyOnTheRight(const EigenBase< OtherDerived > &other)
Definition: MatrixBase.h:511
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: LDLT.h:16
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Rotation given by a cosine-sine pair.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
bool makeJacobi(const MatrixBase< Derived > &, Index p, Index q)
Definition: Jacobi.h:127
Base class for all dense matrices, vectors, and arrays.
Definition: DenseBase.h:41
JacobiRotation transpose() const
Definition: Jacobi.h:59
const unsigned int PacketAccessBit
Definition: Constants.h:89
static Index first_default_aligned(const DenseBase< Derived > &m)
EIGEN_DEVICE_FUNC Packet padd(const Packet &a, const Packet &b)
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col().
Definition: BlockMethods.h:838
EIGEN_DEVICE_FUNC void pstoreu(Scalar *to, const Packet &from)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
#define eigen_assert(x)
Definition: Macros.h:577
EIGEN_DEVICE_FUNC RowXpr row(Index i)
This is the const version of row(). */.
Definition: BlockMethods.h:859
JacobiRotation adjoint() const
Definition: Jacobi.h:62
EIGEN_DEVICE_FUNC const Scalar & q
#define EIGEN_RESTRICT
Definition: Macros.h:794
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Abs2ReturnType abs2() const
EIGEN_DEVICE_FUNC void pstore(Scalar *to, const Packet &from)
TFSIMD_FORCE_INLINE const tfScalar & z() const
NumTraits< Scalar >::Real RealScalar
Definition: Jacobi.h:37
TFSIMD_FORCE_INLINE const tfScalar & w() const
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
#define EIGEN_PLAIN_ENUM_MIN(a, b)
Definition: Macros.h:872
EIGEN_DEVICE_FUNC Packet psub(const Packet &a, const Packet &b)
Scalar & s()
Definition: Jacobi.h:47
void apply_rotation_in_the_plane(DenseBase< VectorX > &xpr_x, DenseBase< VectorY > &xpr_y, const JacobiRotation< OtherScalar > &j)
Definition: Jacobi.h:302
const int Dynamic
Definition: Constants.h:21
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
EIGEN_STRONG_INLINE Scalar pmul(const LhsScalar &x, const RhsScalar &y) const
Definition: BlasUtil.h:68
const T & y
Scalar s() const
Definition: Jacobi.h:48


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:08:17