gauss_newton_approximation_bfgs.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
36 
37 
39 
40 
41 //
42 // PUBLIC MEMBER FUNCTIONS:
43 //
44 
46 {
47  bfgsUpdate = new BFGSupdate;
48 }
49 
50 
52  uint _nBlocks
53  ) : GaussNewtonApproximation( _userInteraction )
54 {
55  bfgsUpdate = new BFGSupdate( _userInteraction,_nBlocks );
56 }
57 
58 
60 {
61  if ( rhs.bfgsUpdate != 0 )
62  bfgsUpdate = new BFGSupdate( *(rhs.bfgsUpdate) );
63  else
64  bfgsUpdate = 0;
65 }
66 
67 
69 {
70  if ( bfgsUpdate != 0 )
71  delete bfgsUpdate;
72 }
73 
74 
76 {
77  if ( this != &rhs )
78  {
79  if ( bfgsUpdate != 0 )
80  delete bfgsUpdate;
81 
83 
84  if ( rhs.bfgsUpdate != 0 )
85  bfgsUpdate = new BFGSupdate( *(rhs.bfgsUpdate) );
86  else
87  bfgsUpdate = 0;
88  }
89 
90  return *this;
91 }
92 
93 
95 {
96  return new GaussNewtonApproximationWithBFGS( *this );
97 }
98 
99 
100 
102  uint N,
103  const OCPiterate& iter
104  )
105 {
106  return GaussNewtonApproximation::initHessian( B,N,iter );
107 }
108 
109 
111  const BlockMatrix& x,
112  const BlockMatrix& y
113  )
114 {
115  if ( bfgsUpdate == 0 )
117 
118  bfgsUpdate->initScaling( B,x,y );
119 
121 }
122 
123 
124 
126  const BlockMatrix &x,
127  const BlockMatrix &y
128  )
129 {
130  if ( bfgsUpdate == 0 )
132 
133  bfgsUpdate->apply( B,x,y );
134 
135  return GaussNewtonApproximation::apply( B,x,y );
136 }
137 
138 
139 
140 //
141 // PROTECTED MEMBER FUNCTIONS:
142 //
143 
144 
145 
146 
147 
149 
150 // end of file.
#define N
Data class for storing generic optimization variables.
Definition: ocp_iterate.hpp:57
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
Implements a very rudimentary block sparse matrix class.
Allows to pass back messages to the calling function.
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
BEGIN_NAMESPACE_ACADO typedef unsigned int uint
Definition: acado_types.hpp:42
#define CLOSE_NAMESPACE_ACADO
Implements a Gauss-Newton approximation as second-order derivatives within NLPsolvers.
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
virtual NLPderivativeApproximation * clone() const
Encapsulates all user interaction for setting options, logging data and plotting results.
Implements a Gauss-Newton approximation with block BFGS updates as second-order derivatives within NL...
void rhs(const real_t *x, real_t *f)
Implements BFGS updates for approximating second-order derivatives within NLPsolvers.
Definition: bfgs_update.hpp:67
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)
GaussNewtonApproximationWithBFGS & operator=(const GaussNewtonApproximationWithBFGS &rhs)
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)
GaussNewtonApproximation & operator=(const GaussNewtonApproximation &rhs)
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
#define BEGIN_NAMESPACE_ACADO
#define ACADOERROR(retval)
Base class for techniques of approximating second-order derivatives within NLPsolvers.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:37