34 #ifndef ACADO_TOOLKIT_NLP_DERIVATIVE_APPROXIMATION_HPP 35 #define ACADO_TOOLKIT_NLP_DERIVATIVE_APPROXIMATION_HPP 131 #include <acado/nlp_derivative_approximation/nlp_derivative_approximation.ipp> 140 #endif // ACADO_TOOLKIT_NLP_DERIVATIVE_APPROXIMATION_HPP virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)=0
virtual NLPderivativeApproximation * clone() const =0
Data class for storing generic optimization variables.
Implements a very rudimentary block sparse matrix class.
virtual returnValue setupOptions()
Allows to pass back messages to the calling function.
Base class for all algorithmic modules within the ACADO Toolkit providing some basic functionality...
BEGIN_NAMESPACE_ACADO typedef unsigned int uint
#define CLOSE_NAMESPACE_ACADO
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)=0
double getHessianScaling() const
Encapsulates all user interaction for setting options, logging data and plotting results.
void rhs(const real_t *x, real_t *f)
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)=0
virtual returnValue setupLogging()
#define BEGIN_NAMESPACE_ACADO
NLPderivativeApproximation & operator=(const NLPderivativeApproximation &rhs)
virtual ~NLPderivativeApproximation()
NLPderivativeApproximation()
Base class for techniques of approximating second-order derivatives within NLPsolvers.