nlp_derivative_approximation.hpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
34 #ifndef ACADO_TOOLKIT_NLP_DERIVATIVE_APPROXIMATION_HPP
35 #define ACADO_TOOLKIT_NLP_DERIVATIVE_APPROXIMATION_HPP
36 
37 
40 
44 
45 
46 
48 
49 
62 {
63  //
64  // PUBLIC MEMBER FUNCTIONS:
65  //
66  public:
67 
70 
72  );
73 
76 
78  virtual ~NLPderivativeApproximation( );
79 
82 
83 
84  virtual NLPderivativeApproximation* clone( ) const = 0;
85 
86 
87 
88  virtual returnValue initHessian( BlockMatrix& B,
89  uint N,
90  const OCPiterate& iter
91  ) = 0;
92 
93  virtual returnValue initScaling( BlockMatrix& B,
94  const BlockMatrix& x,
95  const BlockMatrix& y
96  ) = 0;
97 
98 
99  virtual returnValue apply( BlockMatrix &B,
100  const BlockMatrix &x,
101  const BlockMatrix &y
102  ) = 0;
103 
104 
105  inline double getHessianScaling( ) const;
106 
107 
108 
109  //
110  // PROTECTED MEMBER FUNCTIONS:
111  //
112  protected:
113 
114  virtual returnValue setupOptions( );
115  virtual returnValue setupLogging( );
116 
117 
118  //
119  // PROTECTED DATA MEMBERS:
120  //
121  protected:
122 
124 
125 };
126 
127 
129 
130 
131 #include <acado/nlp_derivative_approximation/nlp_derivative_approximation.ipp>
132 
133 
134 // collect remaining headers
138 
139 
140 #endif // ACADO_TOOLKIT_NLP_DERIVATIVE_APPROXIMATION_HPP
141 
142 /*
143  * end of file
144  */
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)=0
virtual NLPderivativeApproximation * clone() const =0
#define N
Data class for storing generic optimization variables.
Definition: ocp_iterate.hpp:57
Implements a very rudimentary block sparse matrix class.
Allows to pass back messages to the calling function.
Base class for all algorithmic modules within the ACADO Toolkit providing some basic functionality...
BEGIN_NAMESPACE_ACADO typedef unsigned int uint
Definition: acado_types.hpp:42
#define CLOSE_NAMESPACE_ACADO
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)=0
double getHessianScaling() const
Encapsulates all user interaction for setting options, logging data and plotting results.
void rhs(const real_t *x, real_t *f)
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)=0
#define BEGIN_NAMESPACE_ACADO
NLPderivativeApproximation & operator=(const NLPderivativeApproximation &rhs)
Base class for techniques of approximating second-order derivatives within NLPsolvers.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:54