90 for(
uint run1=0; run1<
N; ++run1 )
92 if ( iter.
getNX() != 0 )
98 if ( ( iter.
getNP() != 0 ) && ( run1 != N-1 ) )
101 if ( ( iter.
getNU() != 0 ) && ( run1 != N-1 ) )
104 if ( ( iter.
getNW() != 0 ) && ( run1 != N-1 ) )
110 if ( iter.
getNP() != 0 )
113 if ( iter.
getNU() != 0 )
116 if ( iter.
getNW() != 0 )
131 (x^x).getSubBlock(0,0,scale1,1,1);
132 (y^
y).getSubBlock(0,0,scale2,1,1);
134 if ( ( scale1(0,0) <= 1000.0*
EPS ) || ( scale2(0,0) <= 1000.0*
EPS ) )
Data class for storing generic optimization variables.
Implements a very rudimentary block sparse matrix class.
virtual ~ConstantHessian()
IntermediateState sqrt(const Expression &arg)
BEGIN_NAMESPACE_ACADO const double EPS
Allows to pass back messages to the calling function.
BEGIN_NAMESPACE_ACADO typedef unsigned int uint
#define CLOSE_NAMESPACE_ACADO
Implements a constant Hessian as approximation of second-order derivatives within NLPsolvers...
ConstantHessian & operator=(const ConstantHessian &rhs)
virtual returnValue initScaling(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
Encapsulates all user interaction for setting options, logging data and plotting results.
void rhs(const real_t *x, real_t *f)
virtual returnValue apply(BlockMatrix &B, const BlockMatrix &x, const BlockMatrix &y)
virtual returnValue initHessian(BlockMatrix &B, uint N, const OCPiterate &iter)
virtual NLPderivativeApproximation * clone() const
#define BEGIN_NAMESPACE_ACADO
NLPderivativeApproximation & operator=(const NLPderivativeApproximation &rhs)
returnValue setIdentity(uint rowIdx, uint colIdx, uint dim)
Base class for techniques of approximating second-order derivatives within NLPsolvers.