Computes the generalized eigenvalues and eigenvectors of a pair of general matrices. More...
#include <GeneralizedEigenSolver.h>
Public Types | |
enum | { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime } |
typedef std::complex< RealScalar > | ComplexScalar |
Complex scalar type for MatrixType. | |
typedef Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > | ComplexVectorType |
Type for vector of complex scalar values eigenvalues as returned by betas(). | |
typedef CwiseBinaryOp < internal::scalar_quotient_op < ComplexScalar, Scalar > , ComplexVectorType, VectorType > | EigenvalueType |
Expression type for the eigenvalues as returned by eigenvalues(). | |
typedef Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > | EigenvectorsType |
Type for matrix of eigenvectors as returned by eigenvectors(). | |
typedef MatrixType::Index | Index |
typedef _MatrixType | MatrixType |
Synonym for the template parameter _MatrixType . | |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef MatrixType::Scalar | Scalar |
Scalar type for matrices of type MatrixType. | |
typedef Matrix< Scalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > | VectorType |
Type for vector of real scalar values eigenvalues as returned by betas(). | |
Public Member Functions | |
ComplexVectorType | alphas () const |
VectorType | betas () const |
GeneralizedEigenSolver & | compute (const MatrixType &A, const MatrixType &B, bool computeEigenvectors=true) |
Computes generalized eigendecomposition of given matrix. | |
EigenvalueType | eigenvalues () const |
Returns an expression of the computed generalized eigenvalues. | |
GeneralizedEigenSolver () | |
Default constructor. | |
GeneralizedEigenSolver (Index size) | |
Default constructor with memory preallocation. | |
GeneralizedEigenSolver (const MatrixType &A, const MatrixType &B, bool computeEigenvectors=true) | |
Constructor; computes the generalized eigendecomposition of given matrix pair. | |
ComputationInfo | info () const |
GeneralizedEigenSolver & | setMaxIterations (Index maxIters) |
Protected Types | |
typedef Matrix< Scalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > | ColumnVectorType |
Protected Attributes | |
ComplexVectorType | m_alphas |
VectorType | m_betas |
bool | m_eigenvectorsOk |
MatrixType | m_eivec |
bool | m_isInitialized |
MatrixType | m_matS |
RealQZ< MatrixType > | m_realQZ |
ColumnVectorType | m_tmp |
Computes the generalized eigenvalues and eigenvectors of a pair of general matrices.
_MatrixType | the type of the matrices of which we are computing the eigen-decomposition; this is expected to be an instantiation of the Matrix class template. Currently, only real matrices are supported. |
The generalized eigenvalues and eigenvectors of a matrix pair and are scalars and vectors such that . If is a diagonal matrix with the eigenvalues on the diagonal, and is a matrix with the eigenvectors as its columns, then . The matrix is almost always invertible, in which case we have . This is called the generalized eigen-decomposition.
The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex and real such that: . If is (nearly) zero, then one can consider the well defined left eigenvalue such that: , or even where is called the left eigenvector.
Call the function compute() to compute the generalized eigenvalues and eigenvectors of a given matrix pair. Alternatively, you can use the GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the eigenvalues and eigenvectors at construction time. Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues() and eigenvectors() functions.
Here is an usage example of this class: Example:
Definition at line 57 of file GeneralizedEigenSolver.h.
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::GeneralizedEigenSolver< _MatrixType >::ColumnVectorType [protected] |
Definition at line 274 of file GeneralizedEigenSolver.h.
typedef std::complex<RealScalar> Eigen::GeneralizedEigenSolver< _MatrixType >::ComplexScalar |
Complex scalar type for MatrixType.
This is std::complex<Scalar>
if Scalar is real (e.g., float
or double
) and just Scalar
if Scalar is complex.
Definition at line 83 of file GeneralizedEigenSolver.h.
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::GeneralizedEigenSolver< _MatrixType >::ComplexVectorType |
Type for vector of complex scalar values eigenvalues as returned by betas().
This is a column vector with entries of type ComplexScalar. The length of the vector is the size of MatrixType.
Definition at line 97 of file GeneralizedEigenSolver.h.
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> Eigen::GeneralizedEigenSolver< _MatrixType >::EigenvalueType |
Expression type for the eigenvalues as returned by eigenvalues().
Definition at line 101 of file GeneralizedEigenSolver.h.
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> Eigen::GeneralizedEigenSolver< _MatrixType >::EigenvectorsType |
Type for matrix of eigenvectors as returned by eigenvectors().
This is a square matrix with entries of type ComplexScalar. The size is the same as the size of MatrixType.
Definition at line 108 of file GeneralizedEigenSolver.h.
typedef MatrixType::Index Eigen::GeneralizedEigenSolver< _MatrixType >::Index |
Definition at line 75 of file GeneralizedEigenSolver.h.
typedef _MatrixType Eigen::GeneralizedEigenSolver< _MatrixType >::MatrixType |
Synonym for the template parameter _MatrixType
.
Definition at line 62 of file GeneralizedEigenSolver.h.
typedef NumTraits<Scalar>::Real Eigen::GeneralizedEigenSolver< _MatrixType >::RealScalar |
Definition at line 74 of file GeneralizedEigenSolver.h.
typedef MatrixType::Scalar Eigen::GeneralizedEigenSolver< _MatrixType >::Scalar |
Scalar type for matrices of type MatrixType.
Definition at line 73 of file GeneralizedEigenSolver.h.
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::GeneralizedEigenSolver< _MatrixType >::VectorType |
Type for vector of real scalar values eigenvalues as returned by betas().
This is a column vector with entries of type Scalar. The length of the vector is the size of MatrixType.
Definition at line 90 of file GeneralizedEigenSolver.h.
anonymous enum |
Definition at line 64 of file GeneralizedEigenSolver.h.
Eigen::GeneralizedEigenSolver< _MatrixType >::GeneralizedEigenSolver | ( | ) | [inline] |
Default constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via EigenSolver::compute(const MatrixType&, bool).
Definition at line 117 of file GeneralizedEigenSolver.h.
Eigen::GeneralizedEigenSolver< _MatrixType >::GeneralizedEigenSolver | ( | Index | size | ) | [inline] |
Default constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
Definition at line 125 of file GeneralizedEigenSolver.h.
Eigen::GeneralizedEigenSolver< _MatrixType >::GeneralizedEigenSolver | ( | const MatrixType & | A, |
const MatrixType & | B, | ||
bool | computeEigenvectors = true |
||
) | [inline] |
Constructor; computes the generalized eigendecomposition of given matrix pair.
[in] | A | Square matrix whose eigendecomposition is to be computed. |
[in] | B | Square matrix whose eigendecomposition is to be computed. |
[in] | computeEigenvectors | If true, both the eigenvectors and the eigenvalues are computed; if false, only the eigenvalues are computed. |
This constructor calls compute() to compute the generalized eigenvalues and eigenvectors.
Definition at line 148 of file GeneralizedEigenSolver.h.
ComplexVectorType Eigen::GeneralizedEigenSolver< _MatrixType >::alphas | ( | ) | const [inline] |
This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
Definition at line 209 of file GeneralizedEigenSolver.h.
VectorType Eigen::GeneralizedEigenSolver< _MatrixType >::betas | ( | ) | const [inline] |
This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
Definition at line 220 of file GeneralizedEigenSolver.h.
GeneralizedEigenSolver< MatrixType > & Eigen::GeneralizedEigenSolver< MatrixType >::compute | ( | const MatrixType & | A, |
const MatrixType & | B, | ||
bool | computeEigenvectors = true |
||
) |
Computes generalized eigendecomposition of given matrix.
[in] | A | Square matrix whose eigendecomposition is to be computed. |
[in] | B | Square matrix whose eigendecomposition is to be computed. |
[in] | computeEigenvectors | If true, both the eigenvectors and the eigenvalues are computed; if false, only the eigenvalues are computed. |
*this
This function computes the eigenvalues of the real matrix matrix
. The eigenvalues() function can be used to retrieve them. If computeEigenvectors
is true, then the eigenvectors are also computed and can be retrieved by calling eigenvectors().
The matrix is first reduced to real generalized Schur form using the RealQZ class. The generalized Schur decomposition is then used to compute the eigenvalues and eigenvectors.
The cost of the computation is dominated by the cost of the generalized Schur decomposition.
This method reuses of the allocated data in the GeneralizedEigenSolver object.
Definition at line 291 of file GeneralizedEigenSolver.h.
EigenvalueType Eigen::GeneralizedEigenSolver< _MatrixType >::eigenvalues | ( | ) | const [inline] |
Returns an expression of the computed generalized eigenvalues.
It is a shortcut for
Not that betas might contain zeros. It is therefore not recommended to use this function, but rather directly deal with the alphas and betas vectors.
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix. The eigenvalues are not sorted in any particular order.
Definition at line 198 of file GeneralizedEigenSolver.h.
ComputationInfo Eigen::GeneralizedEigenSolver< _MatrixType >::info | ( | ) | const [inline] |
Definition at line 251 of file GeneralizedEigenSolver.h.
GeneralizedEigenSolver& Eigen::GeneralizedEigenSolver< _MatrixType >::setMaxIterations | ( | Index | maxIters | ) | [inline] |
Sets the maximal number of iterations allowed.
Definition at line 259 of file GeneralizedEigenSolver.h.
ComplexVectorType Eigen::GeneralizedEigenSolver< _MatrixType >::m_alphas [protected] |
Definition at line 267 of file GeneralizedEigenSolver.h.
VectorType Eigen::GeneralizedEigenSolver< _MatrixType >::m_betas [protected] |
Definition at line 268 of file GeneralizedEigenSolver.h.
bool Eigen::GeneralizedEigenSolver< _MatrixType >::m_eigenvectorsOk [protected] |
Definition at line 270 of file GeneralizedEigenSolver.h.
MatrixType Eigen::GeneralizedEigenSolver< _MatrixType >::m_eivec [protected] |
Definition at line 266 of file GeneralizedEigenSolver.h.
bool Eigen::GeneralizedEigenSolver< _MatrixType >::m_isInitialized [protected] |
Definition at line 269 of file GeneralizedEigenSolver.h.
MatrixType Eigen::GeneralizedEigenSolver< _MatrixType >::m_matS [protected] |
Definition at line 272 of file GeneralizedEigenSolver.h.
RealQZ<MatrixType> Eigen::GeneralizedEigenSolver< _MatrixType >::m_realQZ [protected] |
Definition at line 271 of file GeneralizedEigenSolver.h.
ColumnVectorType Eigen::GeneralizedEigenSolver< _MatrixType >::m_tmp [protected] |
Definition at line 275 of file GeneralizedEigenSolver.h.