Public Types |
enum | {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
} |
typedef Matrix< Scalar,
ColsAtCompileTime, 1, Options
&~RowMajor,
MaxColsAtCompileTime, 1 > | ColumnVectorType |
typedef std::complex< typename
NumTraits< Scalar >::Real > | ComplexScalar |
typedef Matrix< ComplexScalar,
ColsAtCompileTime, 1, Options
&~RowMajor,
MaxColsAtCompileTime, 1 > | EigenvalueType |
typedef MatrixType::Index | Index |
typedef _MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
Public Member Functions |
RealQZ & | compute (const MatrixType &A, const MatrixType &B, bool computeQZ=true) |
| Computes QZ decomposition of given matrix.
|
ComputationInfo | info () const |
| Reports whether previous computation was successful.
|
Index | iterations () const |
| Returns number of performed QR-like iterations.
|
const MatrixType & | matrixQ () const |
| Returns matrix Q in the QZ decomposition.
|
const MatrixType & | matrixS () const |
| Returns matrix S in the QZ decomposition.
|
const MatrixType & | matrixT () const |
| Returns matrix S in the QZ decomposition.
|
const MatrixType & | matrixZ () const |
| Returns matrix Z in the QZ decomposition.
|
| RealQZ (Index size=RowsAtCompileTime==Dynamic?1:RowsAtCompileTime) |
| Default constructor.
|
| RealQZ (const MatrixType &A, const MatrixType &B, bool computeQZ=true) |
| Constructor; computes real QZ decomposition of given matrices.
|
RealQZ & | setMaxIterations (Index maxIters) |
Private Types |
typedef JacobiRotation< Scalar > | JRs |
typedef Matrix< Scalar, 2, 2 > | Matrix2s |
typedef Matrix< Scalar, 2, 1 > | Vector2s |
typedef Matrix< Scalar, 3, 1 > | Vector3s |
Private Member Functions |
void | computeNorms () |
Index | findSmallDiagEntry (Index f, Index l) |
Index | findSmallSubdiagEntry (Index iu) |
void | hessenbergTriangular () |
void | pushDownZero (Index z, Index f, Index l) |
void | splitOffTwoRows (Index i) |
void | step (Index f, Index l, Index iter) |
Private Attributes |
bool | m_computeQZ |
Index | m_global_iter |
ComputationInfo | m_info |
bool | m_isInitialized |
Index | m_maxIters |
Scalar | m_normOfS |
Scalar | m_normOfT |
MatrixType | m_Q |
MatrixType | m_S |
MatrixType | m_T |
Matrix< Scalar, Dynamic, 1 > | m_workspace |
MatrixType | m_Z |
template<typename _MatrixType>
class Eigen::RealQZ< _MatrixType >
Performs a real QZ decomposition of a pair of square matrices.
- Template Parameters:
-
_MatrixType | the type of the matrix of which we are computing the real QZ decomposition; this is expected to be an instantiation of the Matrix class template. |
Given a real square matrices A and B, this class computes the real QZ decomposition: , where Q and Z are real orthogonal matrixes, T is upper-triangular matrix, and S is upper quasi-triangular matrix. An orthogonal matrix is a matrix whose inverse is equal to its transpose, . A quasi-triangular matrix is a block-triangular matrix whose diagonal consists of 1-by-1 blocks and 2-by-2 blocks where further reduction is impossible due to complex eigenvalues.
The eigenvalues of the pencil can be obtained from 1x1 and 2x2 blocks on the diagonals of S and T.
Call the function compute() to compute the real QZ decomposition of a given pair of matrices. Alternatively, you can use the RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ) constructor which computes the real QZ decomposition at construction time. Once the decomposition is computed, you can use the matrixS(), matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices S, T, Q and Z in the decomposition. If computeQZ==false, some time is saved by not computing matrices Q and Z.
Example:
Output:
- Note:
- The implementation is based on the algorithm in "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
- See also:
- class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
Definition at line 57 of file RealQZ.h.